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Abstract
Membrane technology is recognized to be unique in many industrial sectors. This technology contributes significantly to 
sustainable development promoted by the principles of Green Chemistry and Process Intensification Strategy (PI). It has 
become a successful alternative technology that led to significant benefits concerning the conventional separation techniques, 
such as ease of processability, flexibility, and small footprints making them the preferred choice in many fields of interest. In 
this overview, the vision for the future development of membrane operations is evidenced and it is based on the improvement 
of existing membrane processes for specific applications, such as hydrogen production, food sector, and distillation, by using 
membrane reactors, bioreactors, and membrane distillation (MD) processes, respectively. Furthermore, to enhance the 
sustainability throughout the lifecycle of membrane products, the exploitation of new solvents and biopolymers platforms that 
have great potential to replace hazardous solvents or petroleum-based materials for more sustainable membranes in different 
geometries is presented and discussed.
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1. State-of-the-Art
Membrane science is currently considered one of the 
best sustainable technologies in the global industry [1]. It 
exhibits significant dependence upon the concepts of green 
chemistry and Progress Intensification Strategy for achieving 
technological changes, such as recycling of waste, waste 
minimization, pollution control, more efficient usage of 
resources, changing production processes, energy recovery, 
lower footprint, and ease of scalability [2]. Membrane 
demand tends to follow overall economic activity; thus, a 
strong correlation exists between membrane consumption 
per capita (including membrane modules, systems, and 
additional equipment) and the global gross domestic product 
(GDP) per capita. The membrane growth in an emerging 
market is expected to increase from 5.4 billion USD in 2019 to 
8.3 billion USD by 2024 [3]. Due to its intrinsic characteristics 
of efficiency and operational simplicity, high selectivity 
and permeability for the transport of specific components, 
this technology represents an interesting answer to the 

environmental damage caused by the increase in production 
and consumption of the resources, rapid industrialization 
and population growth. Membrane technology offers, in 
fact, interesting opportunities in the design, operation, and 
optimization of systems in different sectors such as waste 
treatment, water purification, health-pharmaceutical-
medical, food and biotechnology, organic material separation, 
gas separation, pollution control, and recovery and recycling 
of chemicals. The main advantages of this technology over 
the traditional processes (such as distillation, absorption, 
etc.) include lower environmental impact due to lower energy 
consumption, low investment and operating costs, easy 
scalability, and small footprints.

In the last years, significant progress has been made in 
the preparation of sustainable membranes in different 
configurations, such as flat sheet, hollow fibers, nanofibers, 
or spherical ones, according to Green Chemistry design, and 
many research projects in this area are also in progress [4–
7]. One of the most important subject issues of sustainable 
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membrane preparation is the elimination of fossil-based 
materials and the replacement of hazardous materials and toxic 
polar aprotic solvents such as N-methyl-pyrrolidone (NMP), 
dimethylacetamide (DMAc), and dimethylformamide (DMF) 
with eco-friendly solvents. The solvent represents the major 
component of the casting solution during the membrane 
preparation procedure. It can solubilize the polymer at a 
certain temperature, high chemical affinity with the polymer 
to determine membrane properties and high affinity toward 
the nonsolvent to control the phase inversion process [8]. The 
priority of the sustainable membrane using green solvents or 
biopolymers is the preservation of the membrane structure 
without compromising performance. Figure 1 shows the key 
metrics for the future development of environmentally friendly 
materials for greener membrane preparation. They include 
environment and health assurance, efficiency and prevention, 
circularity, and cost reduction following the principles of 
green chemistry. Reducing volatile organic compounds 
(VOC) levels, carbon footprint, and reducing waste from 
more renewable resources are all drivers of environmental 
progress and human health assurance. The national and local 
VOC regulations, the 'Registration, Evaluation, Authorisation 
and Restriction of Chemicals' (REACH) legislation published 
by the European Chemicals Agency (ECHA) together with the 
necessity of product's carbon footprint raise the requirements 
to change many solvents and polymers. These guidelines 
may require significant research investments for both raw 
material suppliers and membrane manufacturers. Life Cycle 
Assessment (LCA) should be the right tool to quantify the 
impact of a prepared membrane as well as the used solvent 
throughout the “cradle-to-grave” approach that follows the 
life cycle from fabrication to application use and disposal. 
The term “disposal” highlights the necessity to use renewable 
resources from biomass, bio-solvents and bio raw materials, 
to facilitate membrane recycling for a more circular economy 
and environmental protection. Currently, these materials 
are limited, not due to the unavailability of biomass, but due 
to the lack of adequate process capacities. The biorefinery 
concept needs to be further developed in Europe to enable 
the transition from a fossil-based carbon-intensive economy 
to a totally circular and bio sourced solutions. Limiting the 
use of toxic solvents or fossil-based polymers increases the 
transition to less hazardous alternatives at reasonable costs 
when possible.

Figure 1: Metrics that favor the development of greener membrane 
preparation

The potentialities of membrane operations according to PI 
are well established in the literature [1,2]. In the sustainability 
scenario, membrane reactors (MRs) as well as bioreactors 
and/or membrane distillation play a significant role in the 
operation of new membrane units. Today, the MRs constitute 
a solution for several processes thanks to the combination 
of reaction and separation in the same unit, their simplicity, 
automation, and control of the system [9]. MRs can be 
involved in the petrochemical industry, energy conversion, 
and/or hydrogen production. Hydrogen is recognized as the 
new energy vector since the energy contained in the molecule 
can be efficiently converted to electric energy in fuel cells. Its 
purity requirements depend on the final use, and, therefore, 
different separation /purification technologies can be applied. 
Inspired by nature, and in particular by biological membranes, 
membrane bioreactor (MBR) is an intensified process that 
combines biocatalysis with a separation step, based on a 
membrane process [10]. Besides, thanks to the membrane 
versatility, MBRs can be easily integrated with other membranes 
(e.g. pervaporation for biodiesel production, reverse osmosis 
for water treatment, etc.) and non-membrane processes, well 
responding to the development of green processes following 
the logic of PI which aims at the development of new solutions 
in terms of competitiveness, product quality, novelty, and  
environmental compatibility.

Membrane distillation (MD) is an emerging thermal-driven 
technology. Through this process, it is possible to promote 
the transport of vapors and volatile molecules through 
microporous membranes, using a difference in vapor pressure 
as the driving force. High separation efficiencies are obtained, 
with high-purity water produced starting from different 
feeds (wastewater, seawater, etc.), when working both as a 
single membrane operation and in integration with other 
membrane processes (e.g., reverse osmosis) [11]. This work 
aims to put in evidence: 1. the contribution of some membrane 
operations, such as membrane reactors, as well as bioreactors 
and membrane distillation, and their future perspectives for 
sustainable development in different sectors of interest (there 
are no ties between them, but reported as examples of fields 
where sustainable solutions are needed in the next future) 
and 2. how membranes themselves can be prepared in a 
more sustainable way (greener solvents). Both aspects are, in 
fact, crucial for sustainable development based on the use of 
membrane operations. In particular, to highlight the effect of 
different greener solvents on membrane formation, a detailed 
description is reported and compared to the traditional ones. 
Besides the crucial solvent role in membrane stability and 
performance, the new trend toward the use of biopolymers for 
membrane preparation will be described. The future direction 
of membranes in processes such as membrane reactors, 
bioreactors, and membrane distillation, are also highlighted, 
with new membrane systems based on green metrics.

2. New Chemical Platforms for Polymeric 
Membranes
2.1. Conventional Solvents and Polymers for 
Membrane Preparation
The common toxic, polar aprotic solvents such as NMP, 
DMAc, and DMF are still frequently employed in membrane 
preparation, even though their classification as CMR 
substances (carcinogenic, mutagenic, or toxic to reproduction 
substances) has meant that, under hazardous substance 
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legislation, substitution solvents becomes obligatory. The 
amide solvents were classified as toxic for reproduction and 
may damage the unborn child. They also cause eye, skin, 
and respiratory irritation. For many years, their toxicity was 
suspected. In 2011 NMP was added to the candidate list as 
a substance of very high concern (SVHC) and a proposal 
was made in 2018 to classify it as a substance subject to 
authorization (8th Recommendation for inclusion in Annex 
XIV). Then, the restriction on inclusion in Annex XIV was 
postponed until notification in May 2020. A proposal for 
restriction on DMF and DMAc has already been submitted. 
The planned date for adopting the Annex XVII amendment 
for DMAc was the first quarter of 2021 [11]. The DMAc was 
also classified by the European Commission as an SVHC 
substance and registered under REACH in October 2021 due 
to its reproductive toxicity [12]. Generally, a temporary period 
of two years before the application of the proposed restrictions 
is required, to ensure the transition to new chemicals and 
proper communication throughout the supply chain at the 
industrial level. Common polymers such as poly (vinylidene 
fluoride) (PVDF), polyethersulfone (PES), polysulfone (PSF), 
and cellulose acetate (CA) are often used in the preparation of 
membranes. Traditional polymers provide many advantages 
in terms of mechanical, chemical, and thermal stability. They 
have good processability for producing membranes with high 
efficiency of the process. PES is one of the polymers of the 
sulfone family; it is a kind of excellent polymer for its easy 
processability at room temperature and its high solubility in 
different polar aprotic solvents [13,14]. Fluorine polymers 
involve thermoplastic and elastomeric materials ranging 
from semi-crystalline to amorphous state such as poly 
(tetrafluoroethylene)-PTFE and poly (vinylidene fluoride)-
PVDF. Currently, halogenated solvents like chloroform, 
tetrahydrofuran (THF), and dichloromethane (DCM) are 
also used for the producing of dense membranes via the 
evaporation-induced phase separation (EIPS) technique. 
The halogenated solvents are probably carcinogenic to 
humans, according to the World Health Organization IARC 
evaluations [15] with a strong environmental impact of their 
VOC emission and hence the high risk of worker exposure. In 
this regard, the European restriction according to the REACH 
regulation limited the use of toluene, benzene, chloroform, 
and DCM with specific options.

2.2. Green Solvents for Polymeric Membranes 
Preparation
Bio-based solvents are obtained through the chemical or 
physical transformation of plant-based feedstocks, which 
include sugar, starch, oils, and lignocellulose from forestry, 
crops, and organic waste. They have non-toxic, carbon-
neutral, and environmentally friendly properties. Nelson 
traced the first high-level classification of green solvents in 
2003 [16] with a list of 659 solvents. Recently, Wypych [17] 
published a datebook of green solvents that collects data 
sheets for a range of solvents. Those that have been declared 
to be 'green' are predominantly oxo-hydrocarbons (cyclic 
and acyclic alcohols, esters, carbonates, and ethers) with 
some hydrocarbons and those containing other heteroatoms. 
Even though green solvents are becoming more common in 
membrane preparation, their use in biopolymeric membrane 
preparation is still limited. The appropriate solvent-polymer 

systems can be also identified by the solubility parameters 
in terms of dispersive parameter (δd), polar parameter 
(δp), and hydrogen bonding parameter (δh). By controlling 
the the mutual diffusion, the thermodynamic and kinetic 
aspects of membrane formation, membrane morphology, 
as well as performance, can be precisely controlled for 
the required membrane applications. Currently, a series 
of solvents alternate to conventional organic solvents for 
membrane preparation have been developed, e.g. bio-based 
polar aprotic solvents, ionic liquids (ILs), deep eutectic 
solvents, etc. [18]. The most relevant ester and carbonate are 
methyl acetate, ethyl acetate, glycerol triacetate, ethyl lactate, 
γ-valerolactone (GVL), methyl 5-dimethylamino-2-methyl-
5-oxopentanoate (Polarclean), dimethyl carbonate (DMC) 
and glycerol carbonate. In the group of ethers, the relevant 
green solvents are cyclopentyl methyl ether, isosorbide 
dimethyl ether, 2,5-dimethylfuran, 2-methyltetrahydrofuran 
(2MHT), ethylene glycol monomethyl ether, ethylene glycol 
dimethyl ether and dihydrolevoglucosenone (Cyrene®) [19,20]. 
A specific distribution of solvents with key properties and 
safety applied to polymer membranes is reported below. The 
recent works on greener solvents for membrane preparation 
are reported in Table 1.

2.2.1. Non-Toxic Polar Aprotic Solvents
The solvents referred to in this section are identified as 
alternatives to traditional toxic solvents with a less toxic 
profile. The new generation of NMP solvent is the N-butyl 
pyrrolidone (Tamisolve NxG), which is a water-based 
polyurethane mixture that is considered biodegradable, non-
reprotoxic solvent with high miscibility in water. Due to its 
high boiling point (240 °C), it is suitable for the preparation of 
polymeric membranes via NIPS, VIPS, and TIPS techniques. 
TamiSolve NxG has been used, for the first time, for the 
preparation of PVDF membranes via NIPS by Marino et 
al. [21] and Russo et al. [5]. These membranes varied from 
microfiltration (MF) to ultrafiltration (UF) applications. In 
another work, Saïdi et al. [22] used MF PVDF membranes 
prepared using Tamisolve NxG for direct contact membrane 
distillation (DCMD) and Crystallization (Cr) demonstrating 
performance comparable to commercial PVDF membranes. 
The preparation of membranes with this solvent was also 
demonstrated for the preparation of sulfonated polyether 
ether ketone (PEEK-WC) and poly(ethersulfone) (PES) 
membranes. The DMSO is also a substitute for classic polar 
aprotic solvents (DMAc, DMF, and NMP) for its high ability 
to dissolve a wide range of polymers due to its amphipathic 
nature and high polarity. It is derived by the oxidation of 
dimethyl sulfide and it is considered a renewable and non-
toxic solvent for a recent study in vitro [23]. DMSO can be 
used for producing different polymer membranes such as 
PVDF, PES, polyimide, and cellulose [24,25] in flat sheet 
configuration. Furthermore, DMSO can be mixed well 
with acetone to produce PVDF nanofiber membranes by 
electrospinning technique [26]. Arkema Chemical Company 
produced a new upgraded solvent like DMSO EVOLTM 
improving smell without changing its properties. Marino et 
al. [27] used this type for producing PES membranes via VIPS 
method. The range of pore size was modulated by adding 
different concentrations of polyvinylpyrrolidone (PVP) and 
polyethylene glycol (PEG) as pore formers. They obtained a 
water permeability between 2000 to 13200 Lm-2h-1bar-1.
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Table 1: Emerging solvents for PES and PVDF membrane preparation. Reprinted from [28] with the publisher's permission.
M

em
br

an
e 

Solvent Membrane 
preparation technique

Membrane 
geometry

Ref.

Name Molecular 
weight

Boiling 
point

Solubility in water

g/mol °C (20 °C)

PVDF Triethyl phosphate (TEP) 182.15 215 Completely miscible NIPS Flat sheet [29]

[30]

[31]

[32]

Hollow fiber [33]

VIPS-NIPS Flat sheet [34]

Dry-jet wet-spinning 
method

Hollow fiber [35]

PVDF N-buthyl pirrolidone (Tamisolve) 141.21 241 Completely miscible NIPS Flat sheet [5,22]

VIPS-NIPS Flat sheet [21]

PVDF Glycerol triacetate (TRIACETIN) 218.21 258 Slightly miscible TIPS Hollow fiber [36]

PVDF Triethylene glycol diacetate (TEGDA) 234.25 286 Completely miscible TIPS Flat sheet [37]

PES methyl-5-(dimethylamino)-2-methyl-5-
oxopentanoate

(Polarclean)

187.8 278-282 Completely miscible VIPS-NIPS Flat sheet [38]

PES NIPS Hollow fiber [14]

PVDF VIPS-NIPS Flat sheet [39]

N-TIPS Hollow fiber [40]

TIPS [41]

PVDF Maleic acid dibutyl ester (DBM) 228.28 281 Not miscible TIPS Flat sheet [42]

PVDF Dibutyl sebacate 314.46 178-179 Not miscible TIPS Flat sheet [43]

PVDF Propylene carbonate 102.09 240 Completely miscible TIPS Flat sheet [43]

PVDF γ‐Butyrolactone (γ‐BL) 86.09 204-205 Completely miscible TIPS Flat sheet [43]

PES γ-Valerolactone (GVL) 100 207 Completely miscible NIPS Flat sheet [44]

PES Dimethyl isosorbide (DMI) 174.2 250 Completely miscible VIPS-NIPS Flat sheet [13] 

PVDF Completely miscible VIPS-NIPS Flat sheet [13]

PES Dihydrolevoglucosenone (CyreneTM) 128.13 227 Completely miscible VIPS-NIPS Flat sheet [28,45]

PVDF Completely miscible VIPS-NIPS Flat sheet [28]

PES Dimethyl sulfoxide (DMSO) 78.13 189 Completely miscible NIPS Flat sheet [24]

[46]

[47]

[48]

VIPS-NIPS [49]

[27]

[50]

CCD [25]

PVDF NIPS Flat sheet [31]

[51]

Electrospinning Nanofibers [26]

PES 1-ethyl-3-methylimidazolium 
dimethylphosphate ([EMIM]DEP)

236.21 - Completely miscible NIPS Flat sheet [52]

Hollow fiber [53]

PES 1,3-dimethylimidazolium dimethyl 
phosphate ([MMIM]DMP)

222.18 - Completely miscible NIPS Flat sheet [53]

PES 1-butyl-3-methylimidazolium 
hexafluorophosphate ([BMIM][PF6]) 

284.18 - Completely miscible NIPS Flat sheet [54]

PVDF Sulfobetaine-based DES solvents - - Partial miscibility NIPS Flat sheet [4]

NIPS: nonsolvent induced phase separation; VIPS: vapor induced phase separation; TIPS: thermally induced phase separation method; CCD: combined 
crystallization and diffusion.
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Triethyl Phosphate (TEP) is a good alternative to toxic 
solvents. It has a high boiling point (215 °C) and high 
miscibility in water for potential preparation of membranes 
via phase inversion. PVDF has a great affinity with this solvent, 
but the dope solution for membranes presents high viscosity 
with respect to the solution with NMP with the possibility to 
obtain membranes without the presence of macrovoids in the 
structure [55]. The literature pointed out the potential of this 
solvent for flat membranes using a different phase inversion 
method. Marino et al. [29,34] produced PVDF membranes 
via NIPS and VIPS with the evaluation of pore former agents 
such as PVP and PEG. The resulting membranes were also 
applied in the membrane (MD) distillation process. They 
obtained asymmetric structure and pore in the range of UF 
via the NIPS method while by coupling VIPS with NIPS, 
membrane symmetric and bicontinuous morphology were 
prepared in the range of MF. The same result was also observed 
by Shih et al. [56]. They evidenced that TEP is a weak solvent 
for PVDF, which had allowed the minority presence of a 
nonsolvent to induce phase inversion. Consequently, liquid-
liquid demining occurs at an early stage and macrovoids 
cannot develop. Zhao et al. [57] demonstrated the possibility 
of preparing PVDF hollow fibers with TEP using Pluronic 
F127 particles as additives via nonsolvent and thermally 
induced phase separation (N-TIPS). The results showed the 
surface pore structure of membranes without the formation 
of mechanically weak macrovoids. Hybrid membranes, like 
PVDF/GO, PVDF/TiO2, and poly(vinylidene fluoride-co-
chlorotrifluoroethylene) (PVDF-co-CTFE) can be prepared 
as well [58].

2.2.2. Waste Valorization Solvents
Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate 
(Rhodiasolv®PolarClean) is a biodegradable solvent (97% 
after 18 days) reducing the carbon footprint. It is derived 
by the valorization of 2- methylglutaronitrile (MGN) 
which is a byproduct in the hydrocyanation of butadiene 
used to manufacture adipodinitrile (ADN). It has a boiling 
point of 280 °C and a freezing point of -60 °C. For the first 
time, Hassankiadeh et al. [41] prepared hollow fibers by 
using Polarclean as a solvent via the N-TIPS method. It 
was found that PolarClean associated with additives (PEG, 
PVP, and glycerol) induces porous structure and formation 
of β polymorphs in membranes, resulting in high-water 
permeability. This was recently confirmed by the work of 
Tocci et al. [59]. For the second time, Jung et al. [60] prepared 
PVDF membranes in flat sheet configuration via NIPS and 
TIPS methods. The membranes obtained a permeability 
exceeding 2000 Lm-1h-1 bar-1 with an average pore size of 
40-50 nm. Recently, the PVDF copolymer in Polarclean was 
used for producing membranes via the VIPS process by Russo 
et al. [39]. Based on the water permeability and rejection 
tests, carried out using a methylene blue dye, the prepared 
membranes showed that they could be used in MF and UF 
applications. Polarclean is also employed in the preparation 
of PSF, PES, and cellulose [55] membranes by the production, 
for the first time, of porous Matrimid® 5218 membranes [61].

PES Hollow fibers were also produced by Ursino et al. [14]. 
The pore structures of PolarClean/PES hollow fibers were 
from finger-like two sponge-like structures with a pore size 
ranging from 0.04 μm to 0.4 μm by varying the additives, 
polymer concentration, and bore fluids. The cost evaluation 

of the green solvent PolarClean, employed for making PES 
hollow fiber membranes for full-scale production was also 
performed. The final cost of membranes (lower of 4 €/m2), 
was evaluated considering also the manpower and OPEX 
(energy, water, water-solvent disposal, and rental) and not 
only the solvent price.

2.2.3. Bioderived Solvents
Dihydrolevoglucosenone (CyreneTM) solvent is bioderived 
from two steps of conversion of cellulose via levoglucosenone 
(LGO). It was developed by Circa Group and Sherwood et 
al. [45] from York University. It shows a similar dipolarity 
to NMP, DMF, and sulpholane. It presents a boiling point 
of 227 °C, high-water solubility, and solvency capacity for 
different polymers such as PES, PVDF, and Cellulose acetate 
for membrane preparation. Marino et al. proposed, for the 
first time, CyreneTM [28] for PVDF and PES membrane 
preparation, obtaining various membrane morphologies 
(from the sponge-shaped structure to the finger-shaped 
structure) by varying the exposure time to humidity (from 
zero to five minutes). This result was reached without the 
presence of any additives. In addition, the porosity, as well 
as the pore size, was modulated by varying the polymer 
concentration. The PES membranes prepared with CyreneTM 
by using PVP were tested for water filtration. The results 
confirmed the high porosity of membranes with similar 
performances to membranes using NMP [62].

Another polar aprotic solvent that is a popular bioderived 
platform chemical from lignocellulosic biomass is 
γ-Valerolactone (GVL). Its production follows two synthetic 
pathways: one via the production of hydroxymethylfurfural to 
levulinic acid and the second via furfural from hemicellulose 
[63,64]. GVL is soluble in water and presents a high boiling 
point of 208 °C. It is stable at room temperature; at 100 °C 
can react with water to form 4-hydroxyvaleric acid (4-HVA) 
[65]. This represents a limit for the application of membrane 
at high temperatures.

GVL together with glycerol derivatives such as monoacetin, 
diacetin, triacetin, and glycerol, were used for nanofiltration 
membrane preparation by Rasool and Vankelecom [44]. 
Thermodynamic aspects in terms of affinity for different types 
of polymers, i.e., PES, polyimide, and cellulose, were analyzed 
and the membranes prepared via NIPS were characterized by 
morphological analysis. This work demonstrates also that the 
price of the GVL ranged from $2/kg to $100/kg, which is not 
that high by comparison with conventional solvents, i.e., NMP 
(80-150$/kg), DMF (130-$200/kg), DMAc ($35-100/kg), and 
THF ($50-100/kg). In this study, the 2-methyl tetrahydrofuran 
(2-MeTHF) was also used as a co-solvent, representing a 
renewable alternative to tetrahydrofuran (THF). The physical 
properties are the boiling point of 80 °C and melting point of 
-136 °C. It has a lower miscibility in water and higher stability 
than THF. It is synthesized from xylose and glucose [66]. This 
solvent was recently used for NF membrane preparation. An 
initial approach was developed by Chuang et al. [67] that 
used 2-MeTHF for polybenzimidazole (PBI) NF membranes 
obtaining good separation performances with mixed dyes.

The bio-based platform chemical such as dimethyl isosorbide 
(DMI) is considered sugar-based and it is a very promising 
substitute for widely used dipolar aprotic solvents. It can be 
produced from isosorbide via the platform molecule - sorbitol 
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and recently the synthesis was also modified via dimethyl 
carbonate (DMC) chemistry by Aricò et al. [68]. Russo 
et al. [13] proposed DMI, for the first time, for polymeric 
membranes. The research showed that DMI could be used 
as a solvent for two of the most widely used polymers in the 
membrane technology, such as PVDF and PES [13]. The 
phase inversion technique was also examined in connection 
to the kinetic parameter of viscosity and the thermodynamic 
parameter of the ternary phase diagram. The influence of 
the molecular weight of PVDF and the humidity action in 
the preparation were also examined without the presence 
of additives. The results confirmed high values of water 
permeability for both PVDF and PES membranes, from 6300 
to 15000 Lm-2h-1bar-1.

Other potential bio-based solvents are methyl lactate, ethyl 
lactate, and N,N-dimethyl lactamide (DML or AGNIQUE 
AMD 3L from BASF company) [69,70]. Methyl lactate and 
ethyl lactate are considered biodegradable and miscible 
in water. Recently, Rasool et al. [71] prepared cellulose 
acetate membranes using methyl lactate for nanofiltration 
application. DML is used in the cosmetic, pharmaceutical 
products, and chemical industries for its green profile. It is 
biodegradable, from lactic acid by microbial fermentation. It 
has a boiling point, melting point, and flash point of 223oC, 
-2oC, and 109oC, respectively. This solvent is an excellent 
candidate for PES membranes in flat sheet configuration. 
Gronwald and Weber [69] produced PES membranes via 
NIPS for NF application using AGNIQUE AMD 3L. The 
study evidenced the high solubility of the polymer/solvent 
system by using the Hansen theory. The results of membrane 
tests evidenced ultra-high-water permeability, about 610 Lm-

2h-1bar-1. Recently, AGNIQUE AMD 3L was also studied by 
Uebele et al. [70] for producing PES hollow fibers via the NIPS 
technique and with the use of low molecular weight PEG as 
a hydrophilic additive. The effect of the solvent on the dope 
solution and the membrane properties due to the changing in 
bore fluids at different water/solvent ration was investigated. 
The results showed a less stable thermodynamic polymer/
solvent system that confirmed the necessity of less nonsolvent 
to induce phase separation. This can positively affect the wet-
spinning process and promote the use of a humidified air gap 
in the preparation of the membrane.

2.2.4. Organic Carbonates
Organic carbonates are esters of carbonic acid, including a 
carbonyl functional group attached to two alkoxy groups 
[58]. Different kinds of organic carbonates such as dimethyl 
carbonate (DMC), propylene carbonates (PC), ethylene 
carbonate (EC), and 1,2-Butylene carbonate (BC) are 
presently on the market and useful for producing membranes 
more sustainably. They are soluble in water with different 
boiling points: 90 °C for DMC, 242 °C for PC, 248 °C for EC, 
and 238 °C for BC. A systematic study on the solubility of 
carbonate solvents with different polymers was conducted 
by Rasool et al. [72]. Polymers used were PES, PVDF, PSF, 
PAN, polyimide and cellulose. The screening was conducted 
considering the affinity for polymer and the energy difference 
between polymer and solvent. Cellulose was the only polymer 

that can be dissolved in these solvents. The work also produced 
membranes using a mixture of solvents with carbonates.

2.3. Biopolymers for Membranes
The approach of preparing biopolymer membranes from 
renewable resources served as a starting point for an 
effort to reduce the use of fossil-based materials, health 
hazards, environmental issues, and solid waste processing. 
Biopolymers have a low carbon impact, high biocompatibility, 
biodegradability, and biocompatibility [73,74]. Their 
properties show good flexibility but low strength in terms 
of durability and physical stability, which are still the weak 
points today. The future challenges of working entirely 
with biopolymer-based membranes in water treatment and 
gas separation include 1-the improvement of mechanical 
properties, 2- the extension of the aging time, and 3- the 
promotion at an industrial scale [75,76]. The most popular 
biopolymers can be classified as biopolymers from plants 
(cellulose CA etc.), from animals (chitosan CHT), from 
microorganisms (Polyhydroxyalkanoates (PHAs)), from 
synthesis raw materials, that include polycaprolactone 
(PCL), polylactic acid (PLA), poly(vinyl alcohol) (PVA), 
poly(ethylene-co-vinyl alcohol) (EVOH), polyglycolic 
acid (PGA) [74]. Chitosan (CHT) is a biodegradable and 
hydrophobic polymer with cationic properties in terms 
of ability to trap metals or dyes in waste water treatment. 
It also presents thermal stability [77]. PVA is a synthetic 
polymer with semi-crystalline molecular structure. It is 
biodegradable and biocompatible and high solubility in 
water and high processability to spin, to coagulate and 
orient of nanofibers. Pervez and Stylios [78] used the PVA 
polymer for reducing the viscosity of dope solution of CHT 
for electrospun nanofibers preparation. The PVA nanofibers 
have also good adhesive properties for adsorption of organic 
compound in the air and oil/water separation [79]. PHAs 
are considered as potential linear homo and co-polyesters 
derived from microbial fermentation of different sources 
of biomass. They are characterized by hydrophobicity, 
optical purity, high processability and biocompatibility 
without toxic effect. For these properties, they can be 
used for drug carriers and delivery systems [80]. PLA is a 
thermoplastic polyester, which has excellent properties such 
as high processability, water resistance, biocompatibility, 
biodegradability and permeability properties. It presents 
high solubility in different organic solvents, high melting 
point temperature (in the range of 170 and 180 °C) with a 
Tg from 50 to 65°C, depending on the degree of crystallinity. 
It is produced by lactic acid polymerization or ring-opening 
polymerization of cyclic lactide [81]. It can exist in different 
forms, such as L isomer -lactic acid, D isomer-lactic acid or a 
combination of both isomers. The thermal properties of PLA, 
as well as the grade of crystallization, can be influenced by 
the percentage of D- to L-PLA. Recently, PLA found large 
application in pervaporation and gas separation, respect to 
other biopolymers, thanks to its lower degradation rate and 
good mechanical and chemical properties [7,74,82–84]. 
Recently, Galiano et al. [83] employed ethyl lactate to produce 
PLA membranes via E-NIPS. The resulting membranes were 
produced using an evaporative time of 7 min and showed 
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great potential to separate methanol/methyl tert-butyl ether 
via a pervaporation process.

2.4. Future Research and Perspectives on the Use 
of Green Solvents and Biopolymers for Membrane 
Preparation
Based on the overall trend toward Green Chemistry metrics, 
the future of membrane preparation will be dependent on 
the use of sustainable solvents and/or biopolymers, in order 
to protect both the environment and consumers, and reduce 
waste generation and energy consumption. At this stage, 
the number of publications on the use of green solvents and 
biopolymers in membrane preparation has continued to 
increase since 2007 as reported in Figure 2.

This work offers companies the opportunity to partner with 
research to access broader sustainability expertise.

The following perspectives are indicative of future 
developments:

• Besides the green solvents that recently were utilized, other 
bio-based or customized solvents from green platforms 
can be considered for producing polymeric membranes.

• The scalability of the membrane production must be 
addressed. The transition toward green solvents in large-
scale industrial applications is essential for the bio-
economy. Cost analysis need to be considered. This aspect 
depends on the purity, quality and the use of the solvent. 
The concepts of recycling, circular economy and “zero 
waste” play a fundamental role in this panorama [44]. 
The recyclability and reusability of the solvents during 
membrane manufacturing should be investigated in order 
to decrease the overall cost.

• The future projects primarily focus on the study and 
development of novel, highly sustainable membranes. 
These membranes are based on a combination of 
biopolymers and green solvents derived from biomass. 
Their tunable morphology and pore size enable their use 
in various fields of application. Another important aspect 
is the waste disposal of a membrane system (Figure 3). 
In the context of circular economy, the potentials of 
reutilizing polymers (solid waste) derived from the end 
of life of the membrane cover important aspects for 
overviewing a totally sustainable and green membrane 
production [85,86].

3. Membrane Reactors
3.1. Membrane Reactors for Hydrogen Production
The utilization of membrane reactors (MR) constituted by 
membranes exhibiting high selectivity toward hydrogen is 
a promising technology for making hydrogen production 
processes. Generally speaking, MRs are multifunctional 
reactors, which combine in the same unit reaction and 
separation [87] The membrane divides the reactor into 
reaction and permeate zones and can have different functions, 
also combined acting as separator, distributor, and contactor, 
with catalytic properties (Figure 4).

Figure 2: The number of publications from 2007 to 2022 was 
obtained from the Web of Science by combining (A) “membrane” 
and “green solvent” and (B) “membrane” and “biopolymer.”

Figure 3: The concept of waste reutilization in polymeric membrane 
preparation. Adapted from [85].

Figure 4: Packed bed MR. Reprinted from [88] with permission 
from the publisher.

A

B
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In the production of H2, most membranes used in MRs are 
highly selective toward hydrogen. This allows for the selective 
removal of H2 from the reaction volume under the effect of a 
driving force, which is a function of the species' partial pressures 
on both sides of the membrane. This driving force can be 
created by applying a pressure difference, such as compressing 
the feed or applying a vacuum on the permeate side, or by 
using an inert sweep gas on the permeate side to reduce the 
hydrogen partial pressure. Among these options, the first 
one is more advantageous as it enables the recovery of pure 
H2 as a permeate stream. The removal of hydrogen from the 
reaction volume has several advantages, including enhanced 
conversion, reduced secondary reactions, and recovery of a 
concentrated rich stream. In particular, removing a product 
from the reaction volume allows for greater conversion, even 
exceeding the thermodynamic equilibrium conversion of a 
traditional reactor (TREC). Additionally, reaction pressure 
can positively affect reactor performance, independent of 
thermodynamic limits attributed to mole number variations. 
An increase in pressure on the feed side corresponds to a 
higher driving force for hydrogen permeation, resulting 
in greater removal of hydrogen from the reaction volume 
and thus greater conversion. Dense inorganic Pd-based 
membranes and ceramic membranes (such as silica and 
zeolite) can be used in hydrogen production, depending 
on the role of the membrane. Pd-based membranes exhibit 
perm-selective transport governed by a solution-diffusion 
mechanism. Their main advantage is their infinite selectivity 
toward H2, allowing for a pure H2 permeate stream in MRs 
without further downstream separation [89].

However, the high cost is actually one of the main problems that 
limit their diffusion at an industrial level. Currently, several 
works are presenting new composite membranes consisting 
of a thin Pd-based layer deposited, with different techniques, 
on porous supports that can be ceramic or stainless steel. In 
this way, the Pd content is reduced as well as the related cost 
[90]. Another drawback is the inhibition or poisoning effects 
that some species such as carbon monoxide or sulfur can 
exert on the membrane, reducing the permeating flux.

Meso- and micro-porous membranes, such as alumina, silica, 
titania, zirconia, and zeolites, are not affected by poisoning 
and are more affordable than metallic membranes. However, 
they have finite selectivity toward H2, requiring further 
downstream separation to purify their permeate stream.

MRs can have various configurations. The most commonly 
used is the fixed-bed membrane reactor with a tube-in-
tube configuration, where the membrane is the inner tube 
and the catalytic bed is packed in the annulus or core. An 
emerging technology is the fluidized-bed MR, where a 
typical configuration consists of a membrane immersed in 
a catalytic bed operated in a bubbling or turbulent regime 
[91,92] (Figure 5). This configuration offers advantages such 
as higher catalyst effectiveness and enhanced mass and heat 
transfer rates compared to a packed bed MR, resulting in a 
more uniform temperature profile. However, maintaining 
the minimum fluidization velocity to keep the catalyst bed 
in suspension can impose limitations on space velocity and 
contact time conditions.

Figure 5: Schematic of a fixed-bed membrane reactor. Reprinted 
from [93].

Membrane microreactors or micro membrane reactors 
are a recent evolution of MRs; they can be distinguished 
as microreactors reinforced by membrane separation/
purification or membrane reactors miniaturized into 
a characteristic size of 1-1000 μm, which combine the 
advantages of both MRs and microreactors, leading to a 
greatly intensified operation unit [94–96] (Figure 6). Micro-
MRs including hydrogen separation function can be suitable 
for various applications such as hydrogen production from 
water gas shift reaction, methanol steam reforming reaction, 
on-board fuel processing for portable fuel cells, methanol 
dehydrogenation [94,97,98].

3.2. Hydrogen from Light Hydrocarbons or Biomass: 
Traditional Process and Future Perspectives
Membrane reactors are today becoming an innovative solution 
for biomass conversion significantly improving the process, 
reducing the number of the units involved, enhancing the 
yield, and reducing the energetic load as well as the presence 
of auxiliary devices.

Currently, about 96% of hydrogen production comes from 
fossil fuels. In the coming years, the main challenge will be 
to increase the production of blue H2, derived from biomass 
or bioprocesses. Identifying innovative technologies that are 
suitable for blue hydrogen production and can also improve 
traditional processes for better exploitation of fossil fuels, such 
as light hydrocarbons, is an important step toward developing 
intensified processes.

Steam reforming and coal gasification are the most important 
and commonly used processes for hydrogen production. 
Steam reforming is an endothermic, catalytic process carried 
out at temperatures between 700-900°C using a nickel-based 
catalyst. Hydrogen production from coal is typically carried 
out at 30 bars and 800-900°C with steam, producing gaseous 
products such as CO, CO2, H2, and a small amount of methane. 
When feed pressure is increased to 60 bars, methane becomes 
the major product. The syngas stream exiting these reaction 
stages is usually upgraded in another reaction stage, consisting 
of a water gas shift reaction to reduce CO content and increase 
H2 yield. This reaction is conventionally carried out in two 
fixed-bed adiabatic reactors connected in series, followed by 
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a separation unit to recover hydrogen from the rest of the 
gaseous stream. Today, membrane reactors are considered a 
valid alternative to these conventional processes [2,99–101]. 
As aforementioned, the presence of a hydrogen-selective 
membrane allows a hydrogen-rich (or pure, depending on 
the type of membrane used) stream to be recovered, not 
requiring a further separation [2]. For the WGS reaction, 
Barbieri and coworkers [2,9,88,102–113] demonstrated that 
a single MR operating in the high-temperature range can 
obtain better performance than the traditional process in a 
wide range of operating conditions, implying a reduction of 
two reactions and one purification stage in only one unit. 
The CO conversion achieved in the MR was greater than that 
achievable by the entire traditional process and the reaction 
volume required by MR was always lower than the one of the 
whole traditional process [97–103,114]. Using an MR directly 
in the steam reforming of light hydrocarbons can result in 
better performance, higher conversions, higher yields, and 
recovery of a pure/rich hydrogen stream compared to using 
a conventional reactor. Process intensification, with reduced 
reaction volumes, higher conversion, and milder operating 
temperatures, can translate into lower energy consumption, 
reduced plant footprint, enhanced exploitation of raw 
materials, and fewer reaction/separation/purification units. 
In other words, an intensified process.

Promising results obtained at the laboratory scale have 
encouraged some larger-scale applications. Table 2 summarizes 
some of the most important industrial patents related to this 
application in recent years [107,115]. For example, MRT Inc. 
[116] has developed a proven technology based on a patented 
fluidized-bed MR for high-purity hydrogen production. The 
process combines hydrocarbon reforming, shift conversion, 

and hydrogen purification in a single step. Shell Oil Company 
[117] has patented a process and apparatus for producing pure 
hydrogen by steam reforming. This process integrates steam 
reforming and shift reactions to produce pure hydrogen with 
minimal CO production and virtually no CO in the hydrogen 
stream. It also provides for CO2 capture by sequestration, uses 
a steam reforming MR, and is powered by heat from a heater 
convection section.

Various prototypes were developed also in the framework of 
various EU-funded projects. As an example, in the framework 
of the DEMCAMER project (GA 262840) [118], a fixed-bed 
membrane reactor with 33 Pd-based membranes of 22-23 
cm long (OD 10 mm – ID 7 mm) was designed and built for 
producing 5 Nm3/h (grade 3.0) of pure hydrogen in a water 
gas shift membrane reactor (Figure 7).

Hydrogen production from biomass involves various unit 
operations for conversion, clean-up, compression, upgrading, 
and purification of the hydrogen-containing stream. Replacing 
traditional reactors with membrane reactors can significantly 
reduce the number of stages required for conversion and/
or separation (Figure 8). This reduction in the number of 
units and system complexity could lead to the development 
of decentralized systems for hydrogen production, including 
on-site production for hydrogen fueling stations for fuel-cell 
vehicles or direct links to fuel cells for home-based energy 
production [2]. Synergistically combining different energy 
sources, such as fossil or renewable fuels, and solar or wind 
energy, along with the improvement and/or development 
of new fuel conversion technologies, will enable optimal 
exploitation of these sources to produce hydrogen in a 
renewable way (Figure 9).

Table 2: Most relevant pilot scale membrane reactor patents or installations all around the world. Reprinted from [115] with 
the publisher's permission.

Company Country H2 produced H2 purity [%] Reformer details T [°C] Catalytic process Ref.
Power & Energy 
Inc. USA 160 Nm3/h 97 - 99.9999999 Radial Micro Channel 

membrane reactor - Methane steam reforming [119]

Pall Co. USA 47 Nm3/h > 99 Composite Pd-based 
membrane reactor 600 Natural gas steam 

reforming [120]

MRT Ltd. Canada 15-50 
Nm3/h > 99.999 Membrane reactor’s 

HydRecTM 450 Natural gas/renewable 
steam reforming [116]

Shell Oil 
Company USA Up to 1500 

40 Nm3/h High purity Metal membrane 
reactor 450-550 Natural gas steam 

reforming [117]

Tokyo Gas 
Company Ltd. Japan ≥ 40 Nm3/h > 99.99 Composite Pd-based 

membrane reactor 495-540 Natural gas steam 
reforming [121]

KT—Kinetics 
Technology S.p.A Italy 20 Nm3/h 99.9 Pd, Pd-Ag membrane 

reactors 500-650 Natural gas steam 
reforming [122]

Linde-
Engineering 
(Linde Group)

Germany 100 - 400000 
Nm3/h 99.9999 - 600-650 Natural gas steam 

reforming [123]

REB Research & 
Consulting Co. USA 0.018 Nm3/h > 99.9999 Micro membrane 

reactor 200-700
Methane, Methanol, 

Ethanol steam reforming 
& Ammonia cracking

[124]
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Figure 6: (A) Schematic representation of the modular membrane 
reactor system with reformer and combustion modules, with inlets 
and outlets for reaction gases; (B) rough scheme of the combination 
of the three functionalities (combustion for heat supply, reforming 
and hydrogen separation) of a fully integrated methane steam 
reformer in one module. Reprinted from [114].

Figure 7: Picture of the prototype reactor for the WGS process where 
the placement of the WGS-MR is highlighted. Reprinted from [118].

4. Membrane Bioreactors
4.1. Membrane Bioreactors Fundamentals
In MBR, the membrane can act as a separation unit, or it 
can have the dual role of the catalytic and separation unit, as 
it can also be the site where the reaction takes place [125]. 
In the latter case, the biocatalyst is immobilized within 
the membrane pores and the resulting reactor is called a 
biocatalytic membrane reactor (BMR). Depending on the 
membrane material and the final application, different 
biocatalyst immobilization methods can be used, which are 
summarized in Figure 10.

Figure 8: Scheme of plants for hydrogen production from biomass 
feedstock (A) conventional biomass gasification and (B) conventional 
biomass pyrolysis. (C) Innovative plant integrated by membrane 
reactors. Reprinted from [2] with permission from the publisher.

Figure 9: Scheme of a new vision of fuel conversion: a fuel processing 
unit integrated with PEMFC for producing electricity. Reprinted 
from [2] with permission from the publisher.

Biomolecule immobilization can be random, which is 
generally used for membrane reactor development, or 
site-specific, which is mostly used for the production of 
biosensors. To solve problems related to enzyme recovery and 
membrane regeneration, the integration of nanoparticles as 
immobilization support for the biomolecules and membrane 
process is increasingly applied (Figure 10). The NPs used can 
be organic [126] or inorganic, and in the latter case, iron NPs 
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are more frequently used because they can be easily recovered 
by applying an external magnetic field [127].

Based on the position of the membrane in the reactor, 
it is also possible to distinguish between side-stream or 
submerged configurations (Figure 11), the latter being most 
commonly used for water treatment which is more suitable 
for fouling control. In both systems, the biocatalyst can be free 
or immobilized and the strategy for feed supply and product 
recovery can be either continuous and/or intermittent.

The different compartments created by the membrane 
allow the development of heterogeneous (organic/water) / 
multiphasic (liquid/gas) reaction systems [128,129], in which 
the biocatalytic membrane has the additional task of keeping 
the different phases in contact and/or dispersing them. In 
these systems, the phases can be separated by the membrane, 
as in the case of membrane-based solvent extraction processes, 
or dispersed in each other, as in membrane emulsification 
processes [130] (Figure 12).

4.2. Application of MBR/BMR at Industrial Level
In recent years, MBR technology has attracted exponential 
interest from the scientific community as well as municipal and 
industrial wastewater treatment industries due to its advantages 
over conventional methods, such as smaller footprint, 
high effluent quality, lower sludge production, low energy 
consumption, complete separation of hydraulic retention time 
(HRT) and solids retention time (STR), easy scale-up, etc. The 
significant increase in the number of both large (≥ 10,000 m3/d) 
and super-large scale (≥ 100,000 m3/d) water treatment plants 
worldwide is further evidence of the increasing application 
of this technology, which began with the first plant in China 
(Beijing Wenyu River plant) with a capacity of 100 m3/d and 
continues to grow there (more than 200 plants) and around 
the world [131]. The Henriksdal wastewater treatment plant 
in Stockholm [132] is one of the largest in the world (250,000 
m³/d) and it currently serves approximately one million people. 
In 2040 it will have a treatment capacity of 864,000 m3/d thanks 
to an upgrade [132,133].

The following paragraphs focus primarily on the use of 
MBR and BMRs that employ enzymes as catalysts, with an 
emphasis on their application in non-conventional sectors 
(e.g. pharmaceutical, food, etc.), as a promising strategy 
to promote process intensification. In the aforementioned 
sectors, such as food, pharmaceutical, and biofuel 
production, there is a plethora of studies on the use of this 
technology [134–136], but the industrial applications are 
rare (Table 5) and not at the same level as water treatment, 
as they are not driven by the growing scarcity of water 
and increasingly stringent norms about the development 
of green processes. The main problems are related to the 
trade-off between enzyme loading and specific activity, the 
use of enzyme covalent immobilization that does not allow 
enzyme replacement, the need for membrane cleaning with 
aggressive substances that deactivate the enzyme, and the 
low biomolecule stability [137].

Figure 10: MBR configurations with free and immobilized 
biocatalyst and immobilization techniques.

Figure 11: Schematic representation of MBRs in side-stream and 
submerged configuration.

Figure 12: Schematic representation of MBRs conjugated with: (A) 
membrane-based solvent extraction; (B) membrane emulsification 
process to permit catalysis and product extraction.

4.3. Innovative Strategies to Overcome Main Limits
In recent years, several interesting solutions have been 
proposed, which seem very promising to overcome 
the limitations related to enzyme reuse and membrane 
regeneration.

Advances in in situ characterization of the immobilized 
enzyme have made it possible to optimize its distribution 
within membrane pores to avoid excessive accumulation on 
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the membrane and resulting steric hindrance. An 
innovative technique for in situ detection of membrane-
immobilized enzymes was developed by the ITM-CNR 
research group [136,137] and integrates membrane-based 
enzyme immunolocalization with SEM and TEM. Specifically, 
after enzymatic membrane immobilization, biocatalytic 
membranes were thinly sliced and hybridized with specific 
labeled antibodies that were easily detected using TEM and 
SEM. This allowed the enzyme spatial visualization after the 
immobilization and the possibility to optimize its distribution.

Membranes used for enzyme immobilization are not 
specifically designed for this purpose but are generally 
modified by various techniques to create functional groups 
that can bind enzymes. The goal of this modification is to 
introduce functional groups on the membrane surface and 
in the membrane pores without affecting the properties of 
the membrane and thus the transport through it. Surface 
modification of membranes can be done in several ways: 
grafting, etching, and coating [138].

An innovative approach is to combine multiple materials, 
integrating materials with different properties at different 
geometrical scales. In this strategy, the advantages of one 
support can be combined with those of another to develop 
hybrid membranes that have high chemical resistance 
(required for wet chemistry and covalent binding of enzyme) 
and high affinity for enzyme attachment ensuring easy reuse 
of enzymes [139].

Within this strategy, the conjugations of magnetic nanoparticles 
to immobilize enzymes and membrane is a very innovative 
system. It consists of immobilizing enzymes on nanoparticles 
(pectinase [138] xylanase [140], phosphodiesterase [141]), 
dispersed on the membrane surface by an external magnetic 
field, leading to the formation of a biocatalytic hybrid membrane.

This approach allows the biomolecule to be recovered as 
needed and the membrane to be regenerated at the end of the 

process. The strategy is also particularly useful for membrane 
fouling in continuous reaction processes, as it allows 
selective catalyst removal for cyclic membrane cleaning or 
backflushing, without affecting enzyme activity. An increasing 
and promising trend is also the combination of MBR with 
other membrane processes, which allows pretreatment of the 
effluent but may also allow control of the enzymatic reaction 
and membrane fouling in separated steps [127,142]. The use 
of extremophilic enzymes resistant to harsh conditions (e.g. 
high temperature, high pressure, etc.) is another strategy to 
increase the stability of the biocatalyst and the conversion 
once immobilized. One example is the immobilization of 
the thermostable phosphotriesterase from S. solfataricus on 
different polymeric membranes [130,143], which allowed to 
increase in the stability of the immobilized enzyme to more 
than ten months compared to the free enzyme.

4.4. MBR Applications in Non-conventional Sectors
Since the use of MBR in water treatment has been described 
in many reviews [138,144,145] this part will mainly focus on 
enzyme membrane reactors and their use in non-conventional 
sectors. The analysis of a patent survey on the applications of 
MBRs [145] shows that the sectors most interested in their use 
are: food [134] and pharmaceutical [146,147], although also 
biofuel sector is growing exponentially, as recently reviewed 
by Mazzei et al. [137].

In the food sector, the main applications of MBR (Table 
3) are: 1) in milk and whey treatment to produce milk for 
intolerant or allergic people; 2) in fruit juice production to 
decrease stream viscosity and mitigate membrane fouling; 3) 
in starch hydrolysis to produce sugars syrup, cyclodextrins 
and functional oligosaccharides, and 4) in oil treatment 5) in 
wine production and 6) in beer making (Table 3) to improve 
the production process and quality of the final product.

Table 3: MBRs and BMRs application fields, configurations, and biocatalysts used in the food sector.

Application 
field

Aim Biocatalyst Main MBR configuration Ref.

Milk and whey 
treatment

- Production of milk with low-lactose content
- Protein hydrolysis for allergic people

- Production of diet milk

- Lactase
- Pepsin
- Lipase

FB in MBR [137,148–
152]

Fruit juice 
production

- Decrease the high viscosity given by pectin and mitigate 
fouling

- Galacturonic acid production (food additive)

Pectinase - FB in MBR - BMR [153–155]

Starch 
hydrolysis 

- Production of cyclodextrin
- Production of oligosaccarides

- Amylase
- Pullulanase
- Transferase

- FB in MBR - BMR [156,157]

Oil treatment - Production of high-added value lipids compounds, diet 
food, cheap butter substitutes

Lipase -BMR and MBR in 
multiphase systems

[158,159]

Wine making - Must fermentation
- Aroma enhancement

Yeasts Fermentation with FB in 
MBR

[160–163]

Beer making - Production of “green beer” Yeasts Fermentation with FB in 
MBR

[164]

FB: free biocatalyst
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The most common configuration is with a free biocatalyst 
integrated with the membrane separation step, and the most 
commonly used membranes are polymeric since extreme pH 
and temperature are not used to maintain food quality, for 
which ceramic membranes are generally preferred. In Fruit 
juice production, although both MBR configurations are 
used, the biocatalyst status is more often immobilized to limit 
fouling by pectin on the membrane surface.

Some examples of MBRs and BMRs in the food sector are 
also on an industrial scale. One of the first was developed 
by Centrale del Latte (Milan Italy) and Snamprogetti 
S.p.a. (Italy) for the production of low-lactose milk using 
immobilized lactase in polymeric membranes, which could 
produce 10 tons per day [165]. The same team developed 
another BMR with immobilized b-galactosidase to produce 
galactooligosaccharides (nutraceuticals) from the wasted 
lactose [166]. The system was capable of producing about 9.0 
tons of food additives per day.

Another industrial-scale example in the food sector is the 
system developed by Mitsubishi to produce a low-calorie 
sweetener (precursor of aspartame) [167]. In this system, 
a bacterium (Brevibacterium flavium) was used free in the 
reactor, while UF membranes were used to compartmentalize 
the biocatalyst and to separate the product. Other examples 
of industrial use of MBR can be found in the pharmaceutical 
sector, where the main objective is the production of (Table 4), 
vitamins, antibiotics, anti-inflammatory drugs, intermediates 
for drug synthesis, and functional aminoacids. Table 5 lists 
some characteristics of the above systems. In the system 
developed by Degussa AG, acylases from various sources 
were used to produce L-aminoacids (180-240 tons per year) in 
combination with a 0.5-square meter hollow fiber polyamide 
membrane (10 kDa). The same system was also used on a 
technical scale with various enzymes (fumarase, aspartase, 
etc.) to produce proteinogenic and non-proteinogenic amino 
acids. In another system commercialized by Degussa AG, 
two different enzymes (formate dehydrogenase and leucine 
dehydrogenase) were used simultaneously along with two co-
factors, retained by the membrane. It produced 200 tons of 
L-leucine per year, which passed though the membrane with 
CO2 and could be easily separated from the reaction mixture 
without further purification.

A BMR for industrial production of the intermediate diltiazem 
(a coronary vasodilator and calcium channel blocker) was 
developed by Tanabe Seyaku and Sepracor Inc (USA). The 
system was a multiphasic system in which the membrane 
was biocatalytic and also had the role of keeping in contact 
with the organic phase in which the substrate was present 
and the aqueous phase in which the product was extracted. 
The enzyme was immobilized by entrapment on PAN hollow 
fiber membranes (1440 m2) and was able to produce 75 tons 
of drug per year.

Table 4: MBRs and BMRs application fields, configurations, 
and biocatalysts used in the pharmaceutical sector.

Products Biocatalyst Main MBR 
configuration

Ref.

Vitamins Nitrilase/
amylase

FB in MBR [168]

Antibiotics Acylase (e.g. 
penicillin G)

FB in MBR [169,170]

Anti-
inflammatory 
drugs

Lipase BMR in 
multiphase 

systems

[171]

Intermediates 
for the synthesis 
of drugs

Lipase
Dehydrogenase

-BMR in 
multiphase 

systems
- FB in MBR

[172]

Production 
of functional 
aminoacids 
L-aminoacids

Acylase, 
Dehydrogenase, 

Lipase, 
transferase

-BMR in 
multiphase 

systems
- FB in MBR

[173]

Other examples of MBRs are on a small scale, such as 
those used to produce rhinovirus protease inhibitors, ACE 
inhibitors, and drugs to prevent osteoporosis. In these 
systems, there is no need to increase productivity because it is 
strictly related to a specific market requirement. Compared to 
the chemical industry, the productivity is extremely low, but 
the advantages resulting from higher selectivity and higher 
enantiomeric excess, make MBR technology a preferred 
system compared to conventional production processes.

4.5. Challenges and Future Perspectives on the Use of 
MBR and BMR in Non-conventional Sectors
Despite the potential of these technologies in all the sectors 
studied in terms of process intensification, sustainability, 
and bio-based approach compatible with the development 
of an environmentally friendly process, much remains to be 
done to implement the systems on an industrial scale, as has 
already been observed with MBR in water treatment. The 
major drawbacks that have hindered the development of MBR 
and BMR at the industrial scale in the food, pharmaceutical, 
and biofuel sectors are the low stability of the enzymes and 
membrane fouling. To solve these issues, new insights into 
enzyme immobilization, development of new membrane 
materials, and reactor technology must considered.

• Innovative strategies, some of which have been described 
in previous sections, seem to be very promising in 
addressing the main technology drawbacks and could 
be very interesting if thoroughly researched, such as 
the design of multiple support materials with different 
properties at a geometrical scale, could improve 
membrane chemical resistance and compatibility with 
enzymes during immobilization (e.g. the conjugation of 
biofunctionalized magnetic nanoparticles coupled with 
membrane processes to selectively remove the biocatalyst 
when needed.

• The use of extremophile enzyme to be immobilized on 
membranes, which due to the increased tolerance to high 
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temperature can improve enzyme activity/stability as 
well as productivity.

• The introduction of integrated membrane processes, 
before the enzyme membrane reactor, to decrease 
membrane fouling and remove denaturing agents for the 
immobilized enzymes.

• The introduction of in situ characterization techniques 
on immobilized enzymes, to improve their distribution 
on membrane surface and then the conversion.

• The development of new enzyme immobilization 
techniques on membranes, based on nature simulation 
by enzyme compartmentalization.

The simple application of the above strategies will be 
possible if a continuous integration between membrane 
science, genetic engineering, and chemical engineering is 
considered simultaneously.

5. Membrane Distillation
5.1. Membrane Distillation for the Treatment of 
Desalination Brines
Water is a key element for daily life and is becoming a major 
concern for many countries worldwide. In fact, while the 
available sources of fresh water are limited, water consumption 
is rapidly increasing due to both the continuous population 
growth and the high number of industrial activities. Moreover, 
the climate change experienced in the last decades, further 
aggravated the scenario, causing drought in new areas and 
thus contributing to the fresh water sources depletion. One of 
the adopted solutions to face the problem of water scarcity is 
to desalinate seawater. Actually, desalination plants are mainly 
based on the use of reverse osmosis (RO) membranes which 
are able to be selectively permeated by the fresh water while 
retaining salts. However, being the driving force obtained by 
pressurizing the seawater (in order to overcome the osmotic 
pressure), RO is limited to water recovery factors up to 50%. 

This means that RO produces also another stream, called 
brine, in which salts are concentrated and which has to be 
treated/disposed of somehow. The common practice was to  
re-inject the brine into the sea or into deep wells or to discharge 
it into sewage and/or to locate it in evaporation ponds (Figure 
13). These methods led, in time, to serious impacts on the 
environment and new approaches are today needed for making 
desalination plants more sustainable [174,175].

A possible option could be to use MD to treat the produced 
brine. MD employs microporous and hydrophobic membranes, 
often in polypropylene (PP), polyvinylidene fluoride (PVDF), 
or polytetrafluoroethylene (PTFE). Table 6 summarizes the 
main features of membranes used in MD. MD is typically 
applied to purify aqueous feeds, like wastewater coming from 
industry or water contaminated by heavy metals [176–192].

The hot feed (typical temperatures are in the range of 40°C - 
80°C) is kept in contact with one side of the membrane without 
pressurizing it. The hydrophobicity of the membrane material 
prevents the passage of the liquid through the micropores 
while water vapor and volatiles can permeate them thanks to a 
difference of vapor pressure created at the two membrane sides. 
All non-volatiles are kept in the feed side. Depending on how 
the driving force is established, different MD configurations 
can be obtained, like Direct Contact Membrane Distillation 
(DCMD), Air Gap Membrane Distillation (AGMD), Vacuum 
Membrane Distillation (VMD), and Sweep Gas Membrane 
Distillation (SGMD). In Table 7, the sketches of the MD 
configurations, together with their main characteristics, are 
reported. Since MD is based on a difference of vapor pressure 
as a driving force, osmotic limitations are not present in the 
process, and high-concentrated feeds, like the brine produced 
by RO, can efficiently be treated. In this way, the RO brine 
becomes a source of additional fresh water. Moreover, its 
volume can significantly be reduced, thus a lower amount of 
brine has to be managed after the process (Figure 14).

Table 5: Examples of MBR and BMR technology in the pharmaceutical industry.

Reactor Biocatalyst Application Company Space-time 
yield g/L 

day

Tons 
per year

Ref.

M
BR

acylase L- aminoacids production Degussa AG - 180-240 [193]
dehydrogenase L- aminoacids production Degussa AG 42.5 200 [194]

lipase (S)- 3-acetylthioisobutyrate 
production

DMS-Adeno, Tanabe > 100 [195]

dehydrogenase rhinovirus protease inhibitor Pfizer 560 - [196]
Recombinant 

E.coli
L- aminoacids production Degussa AG and research center 

Juelich
19.2 - [197]

BM
R

lipase Production of diltiazem 
intermediate (coronary 

vasodilator and calcium channel 
blocker

Sepracor Tanabe Seyaku 
(Mitsubishi Tanabe Pharma 

Corporation)

125* 75 [198]

lipase Production of drugs for 
osteoporosis prevention

Novo Nordisk - - [199]

transferase Metabolite for potassium channel Pfizer - - [200]
*g/m2day
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Figure 13: Traditional methods for handling the brine produced in 
desalination plants.

Figure 14: The coupling of RO with MD.

If compared with the traditional RO unit, the integrated 
RO–MD units lead to important improvements in the overall 
performance in terms of water recovery factor, quality of the 
produced water, and brine reduction, the only weak point 
being the higher energy consumption due to the thermal 
demand of MD. Nevertheless, typical operating temperatures 
in MD can be reached by using waste heat or renewable 
energies, with a consequent reduction of the associated 
energy consumption. In Figure 15, the performance of RO 
is compared to that of an integrated RO-MD system for two 
case studies, starting from a seawater concentration of 39 g/L 
[201,202]. In one case, the DCMD configuration was chosen, 
while in the other case the VMD configuration was applied. 
Whatever the MD configuration, a significant reduction of 
the produced brine (80%), together with a 2-fold increase 
of the fresh water production was obtained. It is worthy to 
mention that MD can also be applied to approach the Zero 
Liquid Discharge (ZLD) goal, by pushing the water removal 
from the RO brine up to its oversaturation. In this way, salt 
crystals can nucleate, grow and can be recovered as valuable 
products (Figure 16). The MD unit working under these 
conditions is called Membrane Crystallizer (MCr) [203–205].

Figure 15: Comparison of the performance on single and integrated 
RO units. (A) RO vs RO + DCMD. (B) RO vs RO + VMD. The data 
in the figure are from [201] and [202].

Figure 16: The coupling of RO with MCr.

Table 6: Main features of membranes used in MD.

Membrane Microporous and hydrophobic
Contact angle 90° - 140°
Pore size 0.1 - 0.5 µm
Porosity 70 - 80%
Thickness 60 - 200 µm

5.2. Future Research and Perspectives on MD 
Applications
MD is a promising operation for the increase of the freshwater 
recovery factor and the sustainable management of brine in 
desalination plants. Nevertheless, its implementation at a 
large scale is still dependent on a series of issues to be solved/
improved, like the need for membranes stable in time, the 
increase of the trans-membrane flux, and the reduction 
of thermal energy consumption. Membranes in MD must 
keep their hydrophobic character in long-term runs in the 
presence of high salt concentrations. The low fouling tendency 
must also be ensured for an efficient performance. Different 
research activities are in progress, like the development of 
superhydrophobic membranes obtained by appropriate surface 
treatments, the preparation of hydrophilic-hydrophobic 
membranes to reduce the heat and mass transfer resistances, 
thus increasing the flux, the use of electrospinning to obtain 
membranes with more open structure and the development 
of novel membranes with localized heating [206–213]. In 
particular, the tuning of membrane surface properties, such 
as roughness, surface charge, pore size, and surface functional 
groups is under study. The presence of nanoparticles/specific 
coatings on the surface able to be heated by solar light or 
by electrical heating is another type of membrane surface 
modification in progress, to enhance the temperature at the 
liquid-membrane interface, thus reducing the temperature 
polarization and increasing the flux. New module designs are 
also studied to reduce both heat and mass transport resistances, 
as well as fouling, by acting on the fluid dynamic and the 
direction of the hot stream in a way that limits the impact on 
the pressure drops inside the modules [214–217]. The issue of 
thermal energy consumption is being addressed by realizing 
MD modules with internal heat recovery, where the heat of 
condensation is used to pre-heat the feed, and by coupling MD 
units to solar panels or by using geothermal energy [218–222]. 
The integration of different MD configurations [223,224] 
is also another possible solution under investigation. In 
this respect, preliminary studies focused on the coupling 
of a DCMD unit with an AGMD one to heat the retentate 
and with a VMD unit to increase the permeate production.  
Figure 17 summarizes the main research activities in progress 
to improve the MD performance.

B

A
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Figure 17: Main research activities in progress.

6. Conclusions and Outlook
Based on the overall trend toward Green Chemistry metrics, 
the future of membrane engineering will be dependent on the 
use of intensified processes, pursuing a redesign of traditional 
processes as more compact and efficient. Furthermore, the 
new materials for membrane manufacturing pose a challenge 
at different levels of the industry. The implementation of 
green solvents, as well as biopolymers, in the preparation of 
the membranes, is a strategy for producing immediate results 
of sustainable development and will have an obvious impact 
on the processing industries. Greener alternatives are being 
used for their excellent chemical stability, non-flammability, 
and for their physical properties, such as complete solubility 
in water, high boiling point, and low molecular weight. 
This option will positively affect human health through 
uncomplicated and safe handling compared to conventional 
solvents. This study not only provides a useful reference for 
the preparation of membranes using new greener solvents 
and polymeric materials but also ideas for new trends in 
membrane reactors, (bio-) reactors, and MD application. 
Membrane operations will respond to these needs, and will 
further expand their application in the coming years.

Table 7 : Main MD configurations.

Configuration Scheme Main characteristics
DCMD A colder aqueous stream is sent at the permeate side. Condensation 

inside the module in the permeate stream. Heat loss by conduction. 
No heat recovery inside the module.

AGMD Condensation inside the module on a condensing surface. 
Additional resistance is offered by the air gap. Heat recovery inside 
the module by using the feed also as a cold stream.

VMD Vacuum applied at the permeate side. High fluxes and high risk 
of membrane wetting. Condensation outside the module. No heat 
recovery inside the module.

SGMD Sweep gas sent at the permeate side. Condensation outside the 
module. No heat recovery inside the module.
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