Preparation and Performance Control of Orcinol Composite Nanofiltration Membrane for Dimethyl Sulfoxide Recovery
OSN Membrane Prepared from Orcinol
Keywords:
Orcinol, solvent resistance, dimethyl sulfoxide, trimesoyl chloride, interfacial polymerization, ureaAbstract
As a new separation technology, organic solvent nanofiltration (OSN) membrane technology has been increasingly applied in the separation of small molecular compounds in various organic solvents due to its energy saving and high efficiency. Dimethyl sulfoxide (DMSO) is an important solvent in pharmaceutical and catalytic industries, and its recovery has attracted more and more attention. An OSN membrane is firstly constructed by orcinol (OL) and trimesoyl chloride (TMC) via interfacial polymerization (IP). The prepared OSN membrane achieves a crystal violet (CV, 407.99 g/mol) rejection of higher than 92% and a DMSO permeance of 3.0 L m-2 h-1 bar-1. The chemical characterization methods such as X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy are used to indicate that the composite membrane is composed of a polyarylester top layer. To enhance the permeance while maintaining its superior rejection toward CV in DMSO, urea is used as a modifier during IP process. As consequence, the hydrophobicity of the membrane surface is improved, the contact angle increases from 62o to 85o, and the modified poly(amide-co-ester) structure on the top layer was formed. The permeance of urea modified membrane reaches 4.7 L m-2 h-1 bar-1. The long-term OSN filtration showed that the membrane had a DMSO permeance of 4.6 L m-2 h-1 bar-1, with CV rejections over 90%. The architecture of the poly(amide-co-ester) top-layer provides a new route for the fabrication of OSN membranes.
References
Wang X, Wang N, Li X, An Q-F. A review of nano-confined composite membranes fabricated inside the porous support. Advanced Membranes 2021;1:100005. https://doi.org/10.1016/j.advmem.2021.100005.
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Progress in Polymer Science 2020;110:101308. https://doi.org/10.1016/j.progpolymsci.2020.101308.
Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015;356:226–54. https://doi.org/10.1016/j.desal.2014.10.043.
Almijbilee MMA, Wu X, Zhou A, Zheng X, Cao X, Li W. Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Separation and Purification Technology 2020;234:116033. https://doi.org/10.1016/j.seppur.2019.116033.
Shi GM, Feng Y, Li B, Tham HM, Lai J-Y, Chung T-S. Recent progress of organic solvent nanofiltration membranes. Progress in Polymer Science 2021;123:101470. https://doi.org/10.1016/j.progpolymsci.2021.101470.
Ignacz G, Yang C, Szekely G. Diversity matters: Widening the chemical space in organic solvent nanofiltration. Journal of Membrane Science 2022;641:119929. https://doi.org/10.1016/j.memsci.2021.119929.
Scharzec B, Holtkötter J, Bianga J, Dreimann JM, Vogt D, Skiborowski M. Conceptual study of co-product separation from catalyst-rich recycle streams in thermomorphic multiphase systems by OSN. Chemical Engineering Research and Design 2020;157:65–76. https://doi.org/10.1016/j.cherd.2020.02.028.
Zhao Y, Tong T, Wang X, Lin S, Reid EM, Chen Y. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. Environ Sci Technol 2021;55:1359–76. https://doi.org/10.1021/acs.est.0c04593.
Emami MRS, Amiri MK, Zaferani SPG. Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM. Korean J Chem Eng 2021;38:316–25. https://doi.org/10.1007/s11814-020-0698-8.
Zhang Y, Song Q, Liang X, Wang J, Jiang Y, Liu J. High-flux, high-selectivity loose nanofiltration membrane mixed with zwitterionic functionalized silica for dye/salt separation. Applied Surface Science 2020;515:146005. https://doi.org/10.1016/j.apsusc.2020.146005.
Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG. Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. Journal of Membrane Science 2020;609:118212. https://doi.org/10.1016/j.memsci.2020.118212.
He X, Zhou A, Shi C, Zhang J, Li W. Solvent resistant nanofiltration membranes using EDA-XDA co-crosslinked poly(ether imide). Separation and Purification Technology 2018;206:247–55. https://doi.org/10.1016/j.seppur.2018.05.031.
Wang C, Zhang J, Liu C, Song X, Zhang C. Wood–inspired preparation of ligninsulfonate/trimesoylchloride nanofilm with a highly negatively charged surface for removing anionic dyes. Chemical Engineering Journal 2021;412:128609. https://doi.org/10.1016/j.cej.2021.128609.
Wang C, Zhang J, Song X, Zhang C. Ligninsulfonate/trimesoylchloride nanocomposite membrane with transmembrane nanochannels via bionic cell membrane for molecular separation. Journal of Membrane Science 2021;638:119741. https://doi.org/10.1016/j.memsci.2021.119741.
Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nature Mater 2016;15:760–7. https://doi.org/10.1038/nmat4638.
Abdellah MH, Pérez-Manríquez L, Puspasari T, Scholes CA, Kentish SE, Peinemann K-V. A catechin/cellulose composite membrane for organic solvent nanofiltration. Journal of Membrane Science 2018;567:139–45. https://doi.org/10.1016/j.memsci.2018.09.042.
Zhu C-Y, Liu C, Yang J, Guo B-B, Li H-N, Xu Z-K. Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. Journal of Membrane Science 2021;627:119142. https://doi.org/10.1016/j.memsci.2021.119142.
Zhai Z, Jiang C, Zhao N, Dong W, Li P, Sun H, et al. Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. Journal of Membrane Science 2020;595:117505. https://doi.org/10.1016/j.memsci.2019.117505.
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. International Journal of Biological Macromolecules 2021;193:2121–39. https://doi.org/10.1016/j.ijbiomac.2021.11.044.
Karki S, Ingole PG. Chapter Four - Graphene-based thin film nanocomposite membranes for separation and purification. In: Hussain CM, editor. Comprehensive Analytical Chemistry, vol. 91, Elsevier; 2020, p. 73–97. https://doi.org/10.1016/bs.coac.2020.08.005.
Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability 2003;81:9–18. https://doi.org/10.1016/S0141-3910(03)00057-0.
Qin J, Woloctt M, Zhang J. Use of Polycarboxylic Acid Derived from Partially Depolymerized Lignin As a Curing Agent for Epoxy Application. ACS Sustainable Chem Eng 2014;2:188–93. https://doi.org/10.1021/sc400227v.
Gosselink RJA, Abächerli A, Semke H, Malherbe R, Käuper P, Nadif A, et al. Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products 2004;19:271–81. https://doi.org/10.1016/j.indcrop.2003.10.008.
Zhou A, Almijbilee MMA, Zheng J, Wang L. A thin film composite membrane prepared from monomers of vanillin and trimesoyl chloride for organic solvent nanofiltration. Separation and Purification Technology 2021;263:118394. https://doi.org/10.1016/j.seppur.2021.118394.
Zhou A, Shi C, He X, Fu Y, Anjum AW, Zhang J, et al. Polyarylester nanofiltration membrane prepared from monomers of vanillic alcohol and trimesoyl chloride. Separation and Purification Technology 2018;193:58–68. https://doi.org/10.1016/j.seppur.2017.10.047.
Zhou A, Wang Y, Cheng D, Li M, Wang L. Effective interfacially polymerized polyarylester solvent resistant nanofiltration membrane from liquefied walnut shell. Korean J Chem Eng 2022;39:1566–75. https://doi.org/10.1007/s11814-021-1048-1.
Zhou A, Wang Y, Almijbilee MMA, Wang Y, Cheng D. A thin-film composite polyarylester membrane prepared from orcinol and trimesoyl chloride for organic solvent nanofiltration. Iran Polym J 2022;31:1021–32. https://doi.org/10.1007/s13726-022-01054-8.
Li W, Bian C, Fu C, Zhou A, Shi C, Zhang J. A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. Journal of Membrane Science 2016;504:185–95. https://doi.org/10.1016/j.memsci.2015.12.064.
Zhou A, Li L, Li M, Chen Q. Fabrication of Poly(amide-co-ester) Solvent Resistant Nanofiltration Membrane from P-nitrophenol and Trimethyl Chloride via Interfacial Polymerization. Separations 2022;9:28. https://doi.org/10.3390/separations9020028.
Van der Bruggen B, Jansen JC, Figoli A, Geens J, Van Baelen D, Drioli E, et al. Determination of Parameters Affecting Transport in Polymeric Membranes: Parallels between Pervaporation and Nanofiltration. J Phys Chem B 2004;108:13273–9. https://doi.org/10.1021/jp048249g.
Jimenez Solomon MF, Bhole Y, Livingston AG. High flux membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization with solvent activation. Journal of Membrane Science 2012;423–424:371–82. https://doi.org/10.1016/j.memsci.2012.08.030.
Albrecht W, Seifert B, Weigel T, Schossig M, Holländer A, Groth T, et al. Amination of Poly(ether imide) Membranes Using Di- and Multivalent Amines. Macromolecular Chemistry and Physics 2003;204:510–21. https://doi.org/10.1002/macp.200390016.
Roy S, Yue CY, Venkatraman SS, Ma LL. Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 2011;21:15031–40. https://doi.org/10.1039/C1JM11750E.
Zhang R, Yu S, Shi W, Wang W, Wang X, Zhang Z, et al. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4‑dimethylaminopyridine (DMAP). Journal of Membrane Science 2017;542:68–80. https://doi.org/10.1016/j.memsci.2017.07.054.
Li Y, Xue J, Zhang X, Cao B, Li P. Formation of Macrovoid-Free PMDA-MDA Polyimide Membranes Using a Gelation/Non-Solvent-Induced Phase Separation Method for Organic Solvent Nanofiltration. Ind Eng Chem Res 2019;58:6712–20. https://doi.org/10.1021/acs.iecr.9b00623.
Xing DY, Chan SY, Chung T-S. The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chem 2014;16:1383–92. https://doi.org/10.1039/C3GC41634H.
Aburabie J, Emwas A-H, Peinemann K-V. Silane-Crosslinked Asymmetric Polythiosemicarbazide Membranes for Organic Solvent Nanofiltration. Macromolecular Materials and Engineering 2019;304:1800551. https://doi.org/10.1002/mame.201800551.
Aburabie J, Neelakanda P, Karunakaran M, Peinemann K-V. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN). Reactive and Functional Polymers 2015;86:225–32. https://doi.org/10.1016/j.reactfunctpolym.2014.09.011.
Sun S-P, Chung T-S, Lu K-J, Chan S-Y. Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration. AIChE Journal 2014;60:3623–33. https://doi.org/10.1002/aic.14558.
Lu T-D, Chen B-Z, Wang J, Jia T-Z, Cao X-L, Wang Y, et al. Electrospun nanofiber substrates that enhance polar solvent separation from organic compounds in thin-film composites. J Mater Chem A 2018;6:15047–56. https://doi.org/10.1039/C8TA04504F.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ayang Zhou, Mengying Li, Lin Li, Yujie Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited.