Membrane Fouling Prediction for Wastewater Treatment in Membrane Bioreactor System by Using ANN Modeling
Keywords:
artificial neural networks, flux, fouling, membrane filtration, membrane bioreactor, wastewaterAbstract
Membrane fouling has been seen as a big disadvantage of membrane technology. It declined the membrane filtration flux and affected the treatment efficiency of the wastewater treatment systems. Prediction of membrane fouling could provide a suitable solution for operation. In this work, artificial neural networks (ANN) is developed for predicting membrane fouling. The input variables included several parameters such as pH, ammonium, nitrate and alkanility. As a result, two inputs (nitrate and alkanility concentrations inside MBR tank and in the effluent) could give a good performance of the ANN model. Therefore, nitrate and alkanility could be considered as an optimal set of parameters which was used to predict TMP using artificial neural networks. In conclusion, ANN could provide a good solution for predicting membrane fouling in MBR system. Application of ANN could support an alternative way to prevent the membrane fouling in the system.
References
Banu, J. R., Kaliappan, S., Kumar, A., Yeom, I. T., & Uan, D. K. (2011). Effect of low temperature thermochemical pretreatment on sludge reduction potential of membrane bioreactor treating primary treated dairy wastewater. Water Quality Research Journal of Canada, 46(4), 312-320. doi: 10.2166/wqrjc.2011.026
Banu, J. R., Uan, D. K., Chung, I.-J., Kaliappan, S., & Yeom, I.-T. (2009). A study on the performance of a pilot scale A2/0-MBR system in treating domestic wastewater. Journal of Environmental Biology, 30(6), 959-963.
Banu, J. R., Uan, D. K., Kaliappan, S., & Yeom, I. T. (2011). Effect of sludge pretreatment on the performance of anaerobic/ anoxic/ oxic membrane bioreactor treating domestic wastewater. International Journal of Environmental Science & Technology, 8(2), 281-290. doi: 10.1007/bf03326216
Boyle-Gotla, A., Jensen, P. D., Yap, S. D., Pidou, M., Wang, Y., & Batstone, D. J. (2014). Dynamic multidimensional modelling of submerged membrane bioreactor fouling. Journal of Membrane Science, 467, 153-161. doi: https://doi.org/10.1016/j.memsci.2014.05.028
Charfi, A., Aslam, M., Lesage, G., Heran, M., & Kim, J. (2017). Macroscopic approach to develop fouling model under GAC fluidization in anaerobic fluidized bed membrane bioreactor. Journal of Industrial and Engineering Chemistry, 49, 219-229. doi: https://doi.org/10.1016/j.jiec.2017.01.030
Chellam, S. (2005). Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. Journal of Membrane Science, 258(1), 35-42. doi: https://doi.org/10.1016/j.memsci.2004.11.038
Chen, J. C., & Uan, D. K. (2013). Low dissolved oxygen membrane bioreactor processes (LDO-MBRs): a review. International Journal of Environmental Engineering, 5(2), 129-149. doi: 10.1504/ijee.2013.052917
Do, K.-U., Banu, J. R., Chung, I.-J., & Yeom, I.-T. (2009). Effect of thermochemical sludge pretreatment on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. Journal of Chemical Technology & Biotechnology, 84(9), 1350-1355. doi: 10.1002/jctb.2189
Giwa, A., Daer, S., Ahmed, I., Marpu, P. R., & Hasan, S. W. (2016). Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment. Journal of Water Process Engineering, 11, 88-97. doi: https://doi.org/10.1016/j.jwpe.2016.03.011
Gkotsis, P. K., Banti, D. C., Peleka, E. N., Zouboulis, A. I., & Samaras, P. E. (2014). Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies. Processes, 2(4), 795-866. doi: 10.3390/pr2040795
Griffiths, I. M., Kumar, A., & Stewart, P. S. (2014). A combined network model for membrane fouling. Journal of Colloid and Interface Science, 432, 10-18. doi: https://doi.org/10.1016/j.jcis.2014.06.021
Hwang, K.-J., Liao, C.-Y., & Tung, K.-L. (2008). Effect of membrane pore size on the particle fouling in membrane filtration. Desalination, 234(1), 16-23. doi: https://doi.org/10.1016/j.desal.2007.09.065
Judd, S. (2008). The status of membrane bioreactor technology. Trends in Biotechnology, 26(2), 109-116. doi: https://doi.org/10.1016/j.tibtech.2007.11.005
Lim, S., Kim, Y. M., Park, H., Ki, S., Jeong, K., Jangwon, S., . . . Kim, J. H. (2018). Enhancing accuracy of membrane fouling prediction using hybrid machine learning models. Desalination and water treatment, 146, 1-7. doi: 10.5004/dwt.2019.23444
Liu, Q.-F., & Kim, S.-H. (2008). Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flowrate blocking laws and artificial neural network (ANNs) model. Journal of Membrane Science, 310(1), 393-401. doi: https://doi.org/10.1016/j.memsci.2007.11.020
Liu, Q.-F., Kim, S.-H., & Lee, S. (2009). Prediction of microfiltration membrane fouling using artificial neural network models. Separation and Purification Technology, 70(1), 96-102. doi: https://doi.org/10.1016/j.seppur.2009.08.017
Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.-S., & Chae, S.-R. (2017). Fouling in membrane bioreactors: An updated review. Water Res, 114, 151-180. doi: https://doi.org/10.1016/j.watres.2017.02.006
Mittal, S., Gupta, A., Srivastava, S., & Jain, M. (2021). Artificial Neural Network based modeling of the vacuum membrane distillation process: Effects of operating parameters on membrane fouling. Chemical Engineering and Processing - Process Intensification, 164, 108403. doi: https://doi.org/10.1016/j.cep.2021.108403
Nandi, B. K., Moparthi, A., Uppaluri, R., & Purkait, M. K. (2010). Treatment of oily wastewater using low cost ceramic membrane: Comparative assessment of pore blocking and artificial neural network models. Chemical Engineering Research and Design, 88(7), 881-892. doi: https://doi.org/10.1016/j.cherd.2009.12.005
Pimentel, G. A., Dalmau, M., Vargas, A., Comas, J., Rodriguez-Roda, I., Rapaport, A., & Vande Wouwer, A. (2015). Validation of a Simple Fouling Model for a Submerged Membrane Bioreactor. IFAC-PapersOnLine, 48(1), 737-742. doi: https://doi.org/10.1016/j.ifacol.2015.05.031
Rajesh Banu, J., Uan, D. K., & Yeom, I.-T. (2009). Nutrient removal in an A2O-MBR reactor with sludge reduction. Bioresource Technology, 100(16), 3820-3824. doi: https://doi.org/10.1016/j.biortech.2008.12.054
Schmitt, F., Banu, R., Yeom, I.-T., & Do, K.-U. (2018). Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochemical Engineering Journal, 133, 47-58. doi: https://doi.org/10.1016/j.bej.2018.02.001
Schmitt, F., & Do, K.-U. (2017). Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: bottlenecks and possibilities. Environmental Science and Pollution Research, 24(29), 22885-22913. doi: 10.1007/s11356-017-0046-7
Shi, Y., Wang, Z., Du, X., Gong, B., & Jegatheesan, V. (2021). Recent Advances in the Prediction of Fouling in Membrane Bioreactors. 11(6). doi: 10.3390/membranes11060381
Yun, M. A., Yeon, K. M., Park, J. S., Lee, C. H., Chun, J., & Lim, D. J. (2006). Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Res, 40(1), 45-52. doi: 10.1016/j.watres.2005.10.035
Zhang, W., Ruan, X., Ma, Y., Jiang, X., Zheng, W., Liu, Y., & He, G. (2017). Modeling and simulation of mitigating membrane fouling under a baffle-filled turbulent flow with permeate boundary. Separation and Purification Technology, 179, 13-24. doi: https://doi.org/10.1016/j.seppur.2017.01.022
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Khac-Uan Do, Xuan-Quang Chu, Hung-Thuan Tran
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited.