The Status and Perspectives of Sustainable Membrane Materials, Membrane (Bio)reactors, and Membrane Distillation Processes

Authors

  • Francesca Russo Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy
  • Rosalinda Mazzei Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy
  • Adele Brunetti Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy
  • Alessandra Criscuoli Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy
  • Alberto Figoli Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy https://orcid.org/0000-0002-3347-0506

Keywords:

Sustainable membrane materials, membrane reactors, hydrogen production, membrane bioreactors, membrane distillation

Abstract

Membrane technology is recognized to be unique in many industrial sectors. This technology contributes significantly to sustainable development promoted by the principles of Green Chemistry and Process Intensification Strategy (PI). It has become a successful alternative technology that led to significant benefits concerning the conventional separation techniques, such as ease of processability, flexibility, and small footprints making them the preferred choice in many fields of interest. In this overview, the vision for the future development of membrane operations is evidenced and it is based on the improvement of existing membrane processes for specific applications, such as hydrogen production, food sector, and distillation, by using membrane reactors, bioreactors, and membrane distillation (MD) processes, respectively. Furthermore, to enhance the sustainability throughout the lifecycle of membrane products, the exploitation of new solvents and biopolymers platforms that have great potential to replace hazardous solvents or petroleum-based materials for more sustainable membranes in different geometries is presented and discussed.

Author Biography

  • Alberto Figoli, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17c, 87036 Rende (CS) Italy
    Alberto Figoli is serving as the Director of the Institute on Membrane Technology of the National Research Council of Italy, ITM-CNR since March 2019 Dr. Alberto Figoli obtained his Ph.D. degree at Membrane Technology Group, Twente University (Enschede, The Netherlands) in 2001. He graduated in Food Science and Technology at the Agriculture University of Milan in 1996. Since December 2001, he has had a permanent position as a Researcher at Institute on Membrane Technology (CNR-ITM) in Rende (CS), Italy. He is responsible and involved in various National and International projects. He is also responsible, within the CNR organisation, for two research lines on membrane preparation and characterisation and on pervaporation (PV) applications. He is author of more than 250 research papers in peer-reviewed journals and several book chapters; five books, three patents and many oral presentations (also as invited and keynote lecture) in National and International Conferences and Workshops. He is also responsible/participant of several International, European and National Research Project.

References

Muralidhara HS. Challenges of membrane technology in the XXI century. In: Cui ZF, Muralidhara HS, editors. Membrane Technology, Elsevier; 2010, p. 19–32.

Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chemistry 2012;14:1561–72. https://doi.org/10.1039/c2gc16668b.

Membranes market global forecast to 2024. MarketsandMarkets n.d. https://www.marketsandmarkets.com/Market-Reports/membranes-market-1176.html (accessed June 8, 2022).

Russo F, Tiecco M, Galiano F, Mancuso R, Gabriele B, Figoli A. Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. Journal of Membrane Science 2022;649:120387. https://doi.org/10.1016/j.memsci.2022.120387.

Russo F, Marino T, Galiano F, Gzara L, Gordano A, Organji H, et al. Tamisolve® NXG as an alternative non-toxic solvent for the preparation of porous Poly (vinylidene fluoride) membranes. Polymers 2021;13:2579. https://doi.org/10.3390/polym13152579.

Dong X, Lu D, Harris TAL, Escobar IC. Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes (Basel) 2021;11:309. https://doi.org/10.3390/membranes11050309.

Iulianelli A, Russo F, Galiano F, Desiderio G, Basile A, Figoli A. PLA Easy Fil – White‐based membranes for CO2 separation. Greenhouse Gases: Science and Technology 2019;9:360–9. https://doi.org/10.1002/ghg.1853.

Wang HH, Jung JT, Kim JF, Kim S, Drioli E, Lee YM. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of Membrane Science 2019;574:44–54. https://doi.org/10.1016/j.memsci.2018.12.051.

Brunetti A, Drioli E, Barbieri G. Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Processing Technology 2014;118:278–86. https://doi.org/10.1016/j.fuproc.2013.09.009.

Giorno L, Mazzei R, Drioli E. Biological membranes and biomimetic artificial membranes. Comprehensive Membrane Science and Engineering 2010:1–12. https://doi.org/10.1016/b978-0-08-093250-7.00055-4.

EU Commission proposes REACH restriction on uses of DMF n.d. https://product.enhesa.com/162874/eu-commission-pro.

ECHA. Registry of restriction intentions until outcome n.d. https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e18244cd73 (accessed January 18, 2024).

Russo F, Galiano F, Pedace F, Aricò F, Figoli A. Dimethyl isosorbide as a green solvent for sustainable ultrafiltration and microfiltration membrane preparation. ACS Sustainable Chemistry & Engineering 2019;8:659–68. https://doi.org/10.1021/acssuschemeng.9b06496.

Ursino C, Russo F, Ferrari RM, De Santo MP, Di Nicolò E, He T, et al. Polyethersulfone hollow fiber membranes prepared with Polarclean® as a more sustainable solvent. Journal of Membrane Science 2020;608:118216. https://doi.org/10.1016/j.memsci.2020.118216.

IARC. IARC Monographs on the Identification of Carcinogenic Hazards to Humans Questions and Answers 2019. https://monographs.iarc.who.int (accessed December 27, 2021).

Nelson WM. Green Solvents for Chemistry: Perspectives and Practice. Oxford University Press; 2003.

Wypych A, Wypych G. Databook of green solvents. Toronto: ChemTec Publishing; 2014.

Takkellapati S, Li T, Gonzalez MA. An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 2018;20:1615–30. https://doi.org/10.1007/s10098-018-1568-5.

Clark JH, Hunt A, Topi C, Paggiola G, Sherwood J. Sustainable Solvents: Perspectives from Research, Business and International Policy. The Royal Society of Chemistry; 2017. https://doi.org/10.1039/9781782624035.

Zou D, Jeon SM, Kim HW, Bae JY, Lee YM. In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. Journal of Membrane Science 2021;637:119632. https://doi.org/10.1016/j.memsci.2021.119632.

Marino T, Russo F, Criscuoli A, Figoli A. TamiSolve® NxG as novel solvent for polymeric membrane preparation. Journal of Membrane Science 2017;542:418–29. https://doi.org/10.1016/j.memsci.2017.08.038.

Saïdi S, Macedonio F, Russo F, Hannachi C, Hamrouni B, Drioli E, et al. Preparation and characterization of hydrophobic P(VDF-HFP) flat sheet membranes using Tamisolve® NxG solvent for the treatment of saline water by direct contact membrane distillation and membrane crystallization. Separation and Purification Technology 2021;275:119144. https://doi.org/10.1016/j.seppur.2021.119144.

Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 2019;9:4641–4641. https://doi.org/10.1038/s41598-019-40660-0.

Evenepoel N, Wen S, Tilahun Tsehaye M, Van der Bruggen B. Potential of DMSO as greener solvent for PES ultra‐ and nanofiltration membrane preparation. Journal of Applied Polymer Science 2018;135. https://doi.org/10.1002/app.46494.

Wang B, Ji J, Chen C, Li K. Porous membranes prepared by a combined crystallisation and diffusion (CCD) method: Study on formation mechanisms. Journal of Membrane Science 2018;548:136–48. https://doi.org/10.1016/j.memsci.2017.11.005.

Russo F, Ursino C, Avruscio E, Desiderio G, Perrone A, Santoro S, et al. Innovative Poly (vinylidene fluoride) (PVDF) electrospun nanofiber membrane preparation using DMSO as a low toxicity solvent. Membranes (Basel) 2020;10:36. https://doi.org/10.3390/membranes10030036.

Marino T, Galiano F, Simone S, Figoli A. DMSO EVOLTM as novel non-toxic solvent for polyethersulfone membrane preparation. Environmental Science and Pollution Research 2018;26:14774–85. https://doi.org/10.1007/s11356-018-3575-9.

Marino T, Galiano F, Molino A, Figoli A. New frontiers in sustainable membrane preparation: CyreneTM as green bioderived solvent. Journal of Membrane Science 2019;580:224–34. https://doi.org/10.1016/j.memsci.2019.03.034.

Marino T, Blefari S, Di Nicolò E, Figoli A. A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing and Synthesis 2017;6:295–300. https://doi.org/10.1515/gps-2016-0165.

Nejati S, Boo C, Osuji CO, Elimelech M. Engineering flat sheet microporous PVDF films for membrane distillation. Journal of Membrane Science 2015;492:355–63. https://doi.org/10.1016/j.memsci.2015.05.033.

Chang H-H, Chang L-K, Yang C-D, Lin D-J, Cheng L-P. Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 2017;115:164–75. https://doi.org/10.1016/j.polymer.2017.03.044.

Tao M, Liu F, Ma B, Xue L. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 2013;316:137–45. https://doi.org/10.1016/j.desal.2013.02.005.

Abed MRM, Kumbharkar SC, Groth AM, Li K. Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique. Journal of Membrane Science 2012;407–408:145–54. https://doi.org/10.1016/j.memsci.2012.03.029.

Marino T, Russo F, Figoli A. The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation. Membranes (Basel) 2018;8:71. https://doi.org/10.3390/membranes8030071.

Chang J, Zuo J, Zhang L, O'Brien GS, Chung T-S. Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. Journal of Membrane Science 2017;539:295–304. https://doi.org/10.1016/j.memsci.2017.06.002.

Rajabzadeh S, Maruyama T, Sotani T, Matsuyama H. Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method. Separation and Purification Technology 2008;63:415–23. https://doi.org/10.1016/j.seppur.2008.05.027.

Cui Z, Hassankiadeh NT, Lee SY, Woo KT, Lee JM, Sanguineti A, et al. Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. Journal of Membrane Science 2015;473:128–36. https://doi.org/10.1016/j.memsci.2014.09.019.

Marino T, Blasi E, Tornaghi S, Di Nicolò E, Figoli A. Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. Journal of Membrane Science 2018;549:192–204. https://doi.org/10.1016/j.memsci.2017.12.007.

Russo F, Ursino C, Sayinli B, Koyuncu I, Galiano F, Figoli A. Advancements in sustainable PVDF copolymer membrane preparation using Rhodiasolv® polarclean as an alternative eco-friendly solvent. Clean Technologies 2021;3:761–86. https://doi.org/10.3390/cleantechnol3040045.

Jung JT, Wang HH, Kim JF, Lee J, Kim JS, Drioli E, et al. Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. Journal of Membrane Science 2018;559:117–26. https://doi.org/10.1016/j.memsci.2018.04.054.

Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Lee SY, Sanguineti A, et al. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. Journal of Membrane Science 2015;479:204–12. https://doi.org/10.1016/j.memsci.2015.01.031.

Cui Z, Cheng Y, Xu K, Yue J, Zhou Y, Li X, et al. Wide liquid-liquid phase separation region enhancing tensile strength of poly(vinylidene fluoride) membranes via TIPS method with a new diluent. Polymer 2018;141:46–53. https://doi.org/10.1016/j.polymer.2018.02.054.

Su Y, Chen C, Li Y, Li J. PVDF membrane formation via thermally induced phase separation. Journal of Macromolecular Science, Part A 2007;44:99–104. https://doi.org/10.1080/10601320601044575.

Rasool MA, Vankelecom IFJ. Use of γ-valerolactone and glycerol derivatives as bio-based renewable solvents for membrane preparation. Green Chemistry 2019;21:1054–64. https://doi.org/10.1039/c8gc03652g.

Sherwood J, De bruyn M, Constantinou A, Moity L, McElroy CR, Farmer TJ, et al. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem Commun 2014;50:9650–2. https://doi.org/10.1039/c4cc04133j.

Sadeghi I, Aroujalian A, Raisi A, Dabir B, Fathizadeh M. Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions. Journal of Membrane Science 2013;430:24–36. https://doi.org/10.1016/j.memsci.2012.11.051.

Sun W, Chen C, Li J, Lin Y. Ultrafiltration membrane formation of PES-C, PES and Ppesk polymers with different solvents. Chinese Journal of Polymer Science 2009;27:165. https://doi.org/10.1142/s0256767909003790.

Tsehaye MT, Wang J, Zhu J, Velizarov S, Van der Bruggen B. Development and characterization of polyethersulfone-based nanofiltration membrane with stability to hydrogen peroxide. Journal of Membrane Science 2018;550:462–9. https://doi.org/10.1016/j.memsci.2018.01.022.

Thuyavan YL, Anantharaman N, Arthanareeswaran G, Ismail AF. Impact of solvents and process conditions on the formation of polyethersulfone membranes and its fouling behavior in lake water filtration. Journal of Chemical Technology & Biotechnology 2016;91:2568–81. https://doi.org/10.1002/jctb.4846.

Arthanareeswaran G, Starov VM. Effect of solvents on performance of polyethersulfone ultrafiltration membranes: Investigation of metal ion separations. Desalination 2011;267:57–63. https://doi.org/10.1016/j.desal.2010.09.006.

Wang Q, Wang Z, Wu Z. Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination 2012;297:79–86. https://doi.org/10.1016/j.desal.2012.04.020.

Kim D, Salazar OR, Nunes SP. Membrane manufacture for peptide separation. Green Chemistry 2016;18:5151–9. https://doi.org/10.1039/c6gc01259k.

Kim D, Vovusha H, Schwingenschlögl U, Nunes SP. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids. Journal of Membrane Science 2017;539:161–71. https://doi.org/10.1016/j.memsci.2017.06.001.

Lakshmi DS, Cundari T, Furia E, Tagarelli A, Fiorani G, Carraro M, et al. Preparation of polymeric membranes and microcapsules using an ionic liquid as morphology control additive. Macromolecular Symposia 2015;357:159–67. https://doi.org/10.1002/masy.201400214.

Xie W, Li T, Tiraferri A, Drioli E, Figoli A, Crittenden JC, et al. Toward the next generation of sustainable membranes from green chemistry principles. ACS Sustainable Chemistry & Engineering 2020;9:50–75. https://doi.org/10.1021/acssuschemeng.0c07119.

Shih HC, Yeh YS, Yasuda H. Morphology of microporous poly(vinylidene fluoride) membranes studied by gas permeation and scanning electron microscopy. Journal of Membrane Science 1990;50:299–317. https://doi.org/10.1016/s0376-7388(00)80627-4.

Zhao J, Chong JY, Shi L, Wang R. Explorations of combined nonsolvent and thermally induced phase separation (N-TIPS) method for fabricating novel PVDF hollow fiber membranes using mixed diluents. Journal of Membrane Science 2019;572:210–22. https://doi.org/10.1016/j.memsci.2018.11.015.

Zou D, Nunes SP, Vankelecom IFJ, Figoli A, Lee YM. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry 2021;23:9815–43. https://doi.org/10.1039/d1gc03318b.

Tocci E, Rizzuto C, Macedonio F, Drioli E. Effect of green solvents in the production of PVDF-specific polymorphs. Industrial & Engineering Chemistry Research 2020;59:5267–75. https://doi.org/10.1021/acs.iecr.9b06701.

Jung JT, Kim JF, Wang HH, di Nicolo E, Drioli E, Lee YM. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). Journal of Membrane Science 2016;514:250–63. https://doi.org/10.1016/j.memsci.2016.04.069.

Russo F, Castro-Muñoz R, Galiano F, Figoli A. Unprecedented preparation of porous Matrimid® 5218 membranes. Journal of Membrane Science 2019;585:166–74. https://doi.org/10.1016/j.memsci.2019.05.036.

Nguyen Thi HY, Nguyen BTD, Kim JF. Sustainable fabrication of organic solvent nanofiltration membranes. Membranes (Basel) 2020;11:19. https://doi.org/10.3390/membranes11010019.

Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP. Green and sustainable solvents in chemical processes. Chemical Reviews 2018;118:747–800. https://doi.org/10.1021/acs.chemrev.7b00571.

Alonso DM, Wettstein SG, Dumesic JA. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry 2013;15:584. https://doi.org/10.1039/c3gc37065h.

Granatier M, Schlapp-Hackl I, Lê HQ, Nieminen K, Pitkänen L, Sixta H. Stability of gamma-valerolactone under pulping conditions as a basis for process optimization and chemical recovery. Cellulose 2021;28:11567–78. https://doi.org/10.1007/s10570-021-04243-5.

Watanabe K. The toxicological assessment of cyclopentyl methyl ether (CPME) as a green solvent. Molecules 2013;18:3183–94. https://doi.org/10.3390/molecules18033183.

Chuang W-Y, Young T-H, Chiu W-Y, Lin C-Y. The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer 2000;41:5633–41. https://doi.org/10.1016/S0032-3861(99)00818-6.

Aricò F, Aldoshin AS, Tundo P. One‐pot preparation of dimethyl isosorbide from d‐sorbitol via dimethyl carbonate chemistry. ChemSusChem 2016;10:53–7. https://doi.org/10.1002/cssc.201601382.

Gronwald O, Weber M. AGNIQUE AMD 3L as green solvent for polyethersulfone ultrafiltration membrane preparation. Journal of Applied Polymer Science 2019;137. https://doi.org/10.1002/app.48419.

Uebele S, Johann KS, Goetz T, Gronwald O, Ulbricht M, Schiestel T. Poly(ether sulfone) hollow fiber membranes prepared via nonsolvent‐induced phase separation using the green solvent Agnique®AMD3 L. Journal of Applied Polymer Science 2021;138. https://doi.org/10.1002/app.50935.

Rasool MA, Van Goethem C, Vankelecom IFJ. Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Separation and Purification Technology 2020;232:115903. https://doi.org/10.1016/j.seppur.2019.115903.

Rasool MA, Pescarmona PP, Vankelecom IFJ. Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustainable Chemistry & Engineering 2019;7:13774–85. https://doi.org/10.1021/acssuschemeng.9b01507.

Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A. Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science 2018;564:562–86. https://doi.org/10.1016/j.memsci.2018.07.059.

Russo F, Galiano F, Iulianelli A, Basile A, Figoli A. Biopolymers for sustainable membranes in CO2 separation: a review. Fuel Processing Technology 2021;213:106643. https://doi.org/10.1016/j.fuproc.2020.106643.

Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annual Review of Materials Research 2006;36:333–68. https://doi.org/10.1146/annurev.matsci.36.011205.123537.

Silva SS, Rodrigues LC, Fernandes EM, Reis RL. Fundamentals on biopolymers and global demand. Biopolymer Membranes and Films 2020:3–34. https://doi.org/10.1016/b978-0-12-818134-8.00001-8.

Sanmugam A, Vikraman D, Karuppasamy K, Lee JY, Kim H-S. Evaluation of the corrosion resistance properties of electroplated chitosan-zn(1-x)cu(x)o composite thin films. Nanomaterials (Basel) 2017;7:432. https://doi.org/10.3390/nano7120432.

Pervez MN, Stylios GK. An experimental approach to the synthesis and optimisation of a 'green' nanofibre. Nanomaterials (Basel) 2018;8:383. https://doi.org/10.3390/nano8060383.

Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environmental Science & Technology 2005;39:7684–91. https://doi.org/10.1021/es050512j.

Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. Journal of Biotechnology 1998;65:127–61. https://doi.org/10.1016/s0168-1656(98)00126-6.

Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C. Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules 2019;125:307–60. https://doi.org/10.1016/j.ijbiomac.2018.12.002.

Jamian WNR, Hasbullah H, Mohamed F, Salleha WNW, Norazana I, Ali RR. Biodegradable Gas Separation Membrane Preparation by Manipulation of Casting Parameters. Chemical Engineering Transactions 2015;43:1105–10. https://doi.org/10.3303/CET1543185.

Galiano F, Ghanim AH, Rashid KT, Marino T, Simone S, Alsalhy QF, et al. Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technologies and Environmental Policy 2018;21:109–20. https://doi.org/10.1007/s10098-018-1621-4.

Iulianelli A, Russo F, Galiano F, Manisco M, Figoli A. Novel bio-polymer based membranes for CO2/CH4 separation. International Journal of Greenhouse Gas Control 2022;117:103657. https://doi.org/10.1016/j.ijggc.2022.103657.

Goh PS, Othman MHD, Matsuura T. Waste reutilization in polymeric membrane fabrication: a new direction in membranes for separation. Membranes (Basel) 2021;11:782. https://doi.org/10.3390/membranes11100782.

Adamczak M, Kamińska G, Bohdziewicz J. Application of waste polymers as basic material for ultrafiltration membranes preparation. Water 2020;12:179. https://doi.org/10.3390/w12010179.

Drioli E, Giuseppe B, Brunetti A, editors. Membrane Engineering for the Treatment of Gases: Volume 1: Gas-separation Issues with Membranes. The Royal Society of Chemistry; 2017. https://doi.org/10.1039/9781788010436.

Brunetti A, Caravella A, Fernandez E, Pacheco Tanaka DA, Gallucci F, Drioli E, et al. Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane. International Journal of Hydrogen Energy 2015;40:10883–93. https://doi.org/10.1016/j.ijhydene.2015.07.002.

Brunetti A, Caravella A, Drioli E, Barbieri G. Membrane reactors for hydrogen production. In: Drioli E, Barbieri G, Brunetti A, editors. Membrane Engineering for the Treatment of Gases : Gas-separation Issues Combined with Membrane Reactors, The Royal Society of Chemistry; 2017, p. 1–29.

Liguori S, Kian K, Buggy N, Anzelmo BH, Wilcox J. Opportunities and challenges of low-carbon hydrogen via metallic membranes. Progress in Energy and Combustion Science 2020;80:100851. https://doi.org/10.1016/j.pecs.2020.100851.

Habib MA, Harale A, Paglieri S, Alrashed FS, Al-Sayoud A, Rao MV, et al. Palladium-alloy membrane reactors for fuel reforming and hydrogen production: a review. Energy & Fuels 2021;35:5558–93. https://doi.org/10.1021/acs.energyfuels.0c04352.

Gallucci F, Fernandez E, Corengia P, van Sint Annaland M. Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science 2013;92:40–66. https://doi.org/10.1016/j.ces.2013.01.008.

Ongis M, Di Marcoberardino G, Manzolini G, Gallucci F, Binotti M. Membrane reactors for green hydrogen production from biogas and biomethane: A techno-economic assessment. International Journal of Hydrogen Energy 2023;48:19580–95. https://doi.org/10.1016/j.ijhydene.2023.01.310.

Kolb G. Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chemical Engineering and Processing: Process Intensification 2013;65:1–44. https://doi.org/10.1016/j.cep.2012.10.015.

Garcia G, Arriola E, Chen W-H, De Luna MD. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy 2021;217:119384. https://doi.org/10.1016/j.energy.2020.119384.

Tan X, Li K. Membrane microreactors for catalytic reactions. Journal of Chemical Technology & Biotechnology 2013;88:1771–9. https://doi.org/10.1002/jctb.4155.

Dittmeyer R, Boeltken T, Piermartini P, Selinsek M, Loewert M, Dallmann F, et al. Micro and micro membrane reactors for advanced applications in chemical energy conversion. Current Opinion in Chemical Engineering 2017;17:108–25. https://doi.org/10.1016/j.coche.2017.08.001.

Boeltken T, Wunsch A, Gietzelt T, Pfeifer P, Dittmeyer R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. International Journal of Hydrogen Energy 2014;39:18058–68. https://doi.org/10.1016/j.ijhydene.2014.06.091.

Qian JX, Chen TW, Enakonda LR, Liu DB, Basset J-M, Zhou L. Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives. International Journal of Hydrogen Energy 2020;45:15721–43. https://doi.org/10.1016/j.ijhydene.2020.04.100.

Amiri TY, Ghasemzageh K, Iulianelli A. Membrane reactors for sustainable hydrogen production through steam reforming of hydrocarbons: A review. Chemical Engineering and Processing - Process Intensification 2020;157:108148. https://doi.org/10.1016/j.cep.2020.108148.

Patrascu M, Sheintuch M. Design concepts of a scaled-down autothermal membrane reformer for on board hydrogen production. Chemical Engineering Journal 2015;282:123–36. https://doi.org/10.1016/j.cej.2015.02.031.

Brunetti A, Barbieri G, Drioli E. Pd-based membrane reactor for syngas upgrading. Energy & Fuels 2009;23:5073–6. https://doi.org/10.1021/ef900382u.

Barbieri G, Brunetti A, Caravella A, Drioli E. Pd-based membrane reactors for one-stage process of water gas shift. RSC Advances 2011;1:651. https://doi.org/10.1039/c1ra00375e.

Brunetti A, Caravella A, Drioli E, Barbieri G. Process intensification by membrane reactors: high‐temperature water gas shift reaction as single stage for syngas upgrading. Chemical Engineering & Technology 2012;35:1238–48. https://doi.org/10.1002/ceat.201100641.

Zhao C, Caravella A, Xu H, Brunetti A, Barbieri G, Goldbach A. Support mass transfer resistance of Pd/ceramic composite membranes in the presence of sweep gas. Journal of Membrane Science 2018;550:365–76. https://doi.org/10.1016/j.memsci.2017.12.082.

Barbieri G, Brunetti A, Tricoli G, Drioli E. An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen. Journal of Power Sources 2008;182:160–7. https://doi.org/10.1016/j.jpowsour.2008.03.086.

Barbieri G, Brunetti A, Granato T, Bernardo P, Drioli E. Engineering evaluations of a catalytic membrane reactor for the water gas shift reaction. Industrial & Engineering Chemistry Research 2005;44:7676–83. https://doi.org/10.1021/ie050357h.

Brunetti A, Barbieri G, Drioli E, Lee K-H, Sea B, Lee D-W. WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chemical Engineering and Processing: Process Intensification 2007;46:119–26. https://doi.org/10.1016/j.cep.2006.05.005.

Brunetti A, Barbieri G, Drioli E, Granato T, Lee K-H. A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. Chemical Engineering Science 2007;62:5621–6. https://doi.org/10.1016/j.ces.2007.01.054.

Brunetti A, Caravella A, Barbieri G, Drioli E. Simulation study of water gas shift reaction in a membrane reactor. Journal of Membrane Science 2007;306:329–40. https://doi.org/10.1016/j.memsci.2007.09.009.

Brunetti A, Barbieri G, Drioli E. A PEMFC and H2 membrane purification integrated plant. Chemical Engineering and Processing: Process Intensification 2008;47:1081–9. https://doi.org/10.1016/j.cep.2007.03.015.

Brunetti A, Barbieri G, Drioli E. Integrated membrane system for pure hydrogen production: A Pd–Ag membrane reactor and a PEMFC. Fuel Processing Technology 2011;92:166–74. https://doi.org/10.1016/j.fuproc.2010.09.023.

Brunetti A, Drioli E, Barbieri G. Medium/high temperature water gas shift reaction in a Pd–Ag membrane reactor: an experimental investigation. RSC Adv 2012;2:226–33. https://doi.org/10.1039/c1ra00569c.

Wunsch A, Kant P, Mohr M, Haas-Santo K, Pfeifer P, Dittmeyer R. Recent developments in compact membrane reactors with hydrogen separation. Membranes (Basel) 2018;8:107. https://doi.org/10.3390/membranes8040107.

Iulianelli A, Drioli E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology 2020;206:106464. https://doi.org/10.1016/j.fuproc.2020.106464.

MRT. 2022. http://www.membranereactor.com.

Miller DW, Zarker KE. Process for producing hydrogen. US3965253A, 1976.

Gallucci F, Antonio Medrano J, Roses L, Brunetti A, Barbieri G, Viviente J. Process intensification via membrane reactors, the DEMCAMER project. Processes 2016;4:16. https://doi.org/10.3390/pr4020016.

Power+Energy – Fueling the Hydrogen Economy – Fueling the Hydrogen Economy n.d. http://www.powerandenergy.com/ (accessed April 25, 2022).

Pall Corporation | Filtration, Separation, Purification n.d. https://www.pall.com/ (accessed April 25, 2022).

Tokyo Gas n.d. https://www.tokyo-gas.co.jp/index.html (accessed April 25, 2022).

KT - Kinetics Technology n.d. https://www.kt-met.com/it (accessed April 25, 2022).

Think Hydrogen. Think Linde. | Linde Engineering n.d. https://www.linde-engineering.com/en/index.html (accessed January 20, 2024).

REB Research - Home n.d. http://www.rebresearch.com/ (accessed April 25, 2022).

Giorno L, Gebreyohannes AY, Drioli E, Mazzei R. Biocatalytic membranes and membrane bioreactors. Comprehensive Membrane Science and Engineering 2017;3:55–71. https://doi.org/10.1016/b978-0-12-409547-2.12234-6.

Vitola G, Büning D, Schumacher J, Mazzei R, Giorno L, Ulbricht M. Development of a novel immobilization method by using microgels to keep enzyme in hydrated microenvironment in porous hydrophobic membranes. Macromolecular Bioscience 2016;17. https://doi.org/10.1002/mabi.201600381.

Gebreyohannes AY, Mazzei R, Marei Abdelrahim MY, Vitola G, Porzio E, Manco G, et al. Phosphotriesterase-magnetic nanoparticle bioconjugates with improved enzyme activity in a biocatalytic membrane reactor. Bioconjugate Chemistry 2018;29:2001–8. https://doi.org/10.1021/acs.bioconjchem.8b00214.

Vitola G, Mazzei R, Poerio T, Barbieri G, Fontananova E, Büning D, et al. Influence of lipase immobilization mode on ethyl acetate hydrolysis in a continuous solid–gas biocatalytic membrane reactor. Bioconjugate Chemistry 2019;30:2238–46. https://doi.org/10.1021/acs.bioconjchem.9b00463.

Ranieri G, Mazzei R, Wu Z, Li K, Giorno L. Use of a ceramic membrane to improve the performance of two-separate-phase biocatalytic membrane reactor. Molecules 2016;21:345–345. https://doi.org/10.3390/molecules21030345.

Mazzei R, Piacentini E, Nardi M, Poerio T, Bazzarelli F, Procopio A, et al. Production of plant-derived oleuropein aglycone by a combined membrane process and evaluation of its breast anticancer properties. Front Bioeng Biotechnol 2020;8:908–908. https://doi.org/10.3389/fbioe.2020.00908.

Largest MBR plants worldwide. The MBR Site 2018. https://www.thembrsite.com/largest-mbr-plants/largest-membrane-bioreactor-plants-worldwide/ (accessed June 3, 2022).

Henriksdal Wastewater Treatment Plant, Stockholm - Water Technology n.d. https://www.water-technology.net/projects/henriksdal-wastewater-treatment-plant-stockholm (accessed April 30, 2022).

Judd SJ. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal 2016;305:37–45. https://doi.org/10.1016/j.cej.2015.08.141.

Mazzei R, Piacentini E, Gebreyohannes AY, Giorno L. Membrane bioreactors in food, pharmaceutical and biofuel applications: state of the art, progresses and perspectives. Current Organic Chemistry 2017;21. https://doi.org/10.2174/1385272821666170306113448.

Xiao K, Liang S, Wang X, Chen C, Huang X. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresource Technology 2019;271:473–81. https://doi.org/10.1016/j.biortech.2018.09.061.

Giorno L, Mazzei R, Piacentini E, Drioli E. Food applications of membrane bioreactors. Engineering Aspects of Membrane Separation and Application in Food Processing. 1st Edition, CRC Press; 2017, p. 299–360.

Mazzei R, Yihdego Gebreyohannes A, Papaioannou E, Nunes SP, Vankelecom IFJ, Giorno L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. Bioresource Technology 2021;335:125248. https://doi.org/10.1016/j.biortech.2021.125248.

Vitola G, Mazzei R, Fontananova E, Porzio E, Manco G, Gaeta SN, et al. Polymeric biocatalytic membranes with immobilized thermostable phosphotriesterase. Journal of Membrane Science 2016;516:144–51. https://doi.org/10.1016/j.memsci.2016.06.020.

Yuan Y, Shen J, Salmon S. Developing enzyme immobilization with fibrous membranes: longevity and characterization considerations. Membranes (Basel) 2023;13:532. https://doi.org/10.3390/membranes13050532.

Gebreyohannes AY, Mazzei R, Poerio T, Aimar P, Vankelecom IFJ, Giorno L. Pectinases immobilization on magnetic nanoparticles and their anti-fouling performance in a biocatalytic membrane reactor. RSC Advances 2016;6:98737–47. https://doi.org/10.1039/c6ra20455d.

Acosta-Fernández R, Poerio T, Nabarlatz D, Giorno L, Mazzei R. Enzymatic hydrolysis of xylan from coffee parchment in membrane bioreactors. Industrial & Engineering Chemistry Research 2020;59:7346–54. https://doi.org/10.1021/acs.iecr.9b06429.

Conidi C, Mazzei R, Cassano A, Giorno L. Integrated membrane system for the production of phytotherapics from olive mill wastewaters. Journal of Membrane Science 2014;454:322–9. https://doi.org/10.1016/j.memsci.2013.12.021.

Vitola G, Mazzei R, Poerio T, Porzio E, Manco G, Perrotta I, et al. Biocatalytic membrane reactor development for organophosphates degradation. Journal of Hazardous Materials 2019;365:789–95. https://doi.org/10.1016/j.jhazmat.2018.11.063.

Chang H-M, Chen S-S, Hsiao S-S, Chang W-S, Chien I-C, Duong CC, et al. Water reclamation and microbial community investigation: Treatment of tetramethylammonium hydroxide wastewater through an anaerobic osmotic membrane bioreactor hybrid system. Journal of Hazardous Materials 2022;427:128200. https://doi.org/10.1016/j.jhazmat.2021.128200.

Pervez MdN, Balakrishnan M, Hasan SW, Choo K-H, Zhao Y, Cai Y, et al. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. Npj Clean Water 2020;3. https://doi.org/10.1038/s41545-020-00090-2.

Giorno L, Mazzei R, Drioli E. Biochemical membrane reactors in industrial processes. Membrane Operations 2009:397–409. https://doi.org/10.1002/9783527626779.ch17.

Piacentini E, Mazzei R, Giorno L. Membrane bioreactors for pharmaceutical applications: optically pure enantiomers production. Current Pharmaceutical Design 2017;23:250–62. https://doi.org/10.2174/1381612823666161123143512.

Splechtna B, Petzelbauer I, Kuhn B, Kulbe KD, Nidetzky B. Hydrolysis of lactose by β-glycosidase Celb from hyperthermophilic archaeon Pyrococcus furiosus. Applied Biochemistry and Biotechnology 2002;98–100:473–88. https://doi.org/10.1385/abab:98-100:1-9:473.

Novalin S, Neuhaus W, Kulbe KD. A new innovative process to produce lactose-reduced skim milk. Journal of Biotechnology 2005;119:212–8. https://doi.org/10.1016/j.jbiotec.2005.03.018.

Splechtna B, Nguyen T-H, Haltrich D. Comparison between discontinuous and continuous lactose conversion processes for the production of prebiotic galacto-oligosaccharides using β-galactosidase from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry 2007;55:6772–7. https://doi.org/10.1021/jf070643z.

Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, et al. Feasibility study of enzyme immobilization on polymeric membrane: A case study with enzymatically galacto-oligosaccharides production from lactose. Journal of Membrane Science 2011;378:471–8. https://doi.org/10.1016/j.memsci.2011.05.032.

Regenhardt SA, Mammarella EJ, Rubiolo AC. Hydrolysis of lactose from cheese whey using a reactor with β-galactosidase enzyme immobilised on a commercial UF membrane. Chemical and Process Engineering 2013;34:375–85. https://doi.org/10.2478/cpe-2013-0030.

Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 2018;8:199–199. https://doi.org/10.1007/s13205-018-1220-4.

Bélafi-Bakó K, Eszterle M, Kiss K, Nemestóthy N, Gubicza L. Hydrolysis of pectin by Aspergillus niger polygalacturonase in a membrane bioreactor. Journal of Food Engineering 2007;78:438–42. https://doi.org/10.1016/j.jfoodeng.2005.10.012.

Belafi-Bako K, Nemestothy N. The role of biocatalysis and membrane techniques in processing high-pectin content food stuffs and wastes. Food Biosynthesis 2017:277–92. https://doi.org/10.1016/b978-0-12-811372-1.00009-9.

Sarbatly R, England R. Critical review of membrane bioreactor system used for continuous production of hydrolyzed starch. Chemical and Biochemical Engineering Quarterly 2004;18.

Słomińska L, Szostek A, Grześkowiak A. Studies on enzymatic continuous production of cyclodextrins in an ultrafiltration membrane bioreactor. Carbohydrate Polymers 2002;50:423–8. https://doi.org/10.1016/s0144-8617(02)00060-7.

Shen X, Lu L, Gao B, Xu X, Yue Q. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater. Frontiers of Environmental Science & Engineering 2018;13. https://doi.org/10.1007/s11783-019-1093-8.

Possebom G, Nyari NL, Zeni J, Steffens J, Rigo E, Di Luccio M. Esterification of fatty acids by Penicillium crustosum lipase in a membrane reactor. Journal of the Science of Food and Agriculture 2014;94:2905–11. https://doi.org/10.1002/jsfa.6630.

Takaya M, Matsumoto N, Yanase H. Characterization of membrane bioreactor for dry wine production. Journal of Bioscience and Bioengineering 2002;93:240–4. https://doi.org/10.1016/s1389-1723(02)80021-4.

Lovitt R, Jung I, Jones M. The performance of a membrane bioreactor for the malolactic fermentation of media containing ethanol. Desalination 2006;199:435–7. https://doi.org/10.1016/j.desal.2006.03.203.

Gallifuoco A, Alfani F, Cantarella M, Spagna G, Pifferi PG. Immobilized β-glucosidase for the winemaking industry: study of biocatalyst operational stability in laboratory-scale continuous reactors. Process Biochemistry 1999;35:179–85. https://doi.org/10.1016/s0032-9592(99)00049-7.

Gao C, Fleet GH. Cell-recycle membrane bioreactor for conducting continuous malolactic fermentation. Australian Journal of Grape and Wine Research 1995;1:32–8. https://doi.org/10.1111/j.1755-0238.1995.tb00075.x.

Lipnizki F, Dupuy A. Food Industry Applications. Encyclopedia of Membrane Science and Technology 2013:1–23. https://doi.org/10.1002/9781118522318.emst126.

Pastore M, Morisi F. Lactose reduction of milk by fiber-entrapped β-galactosidase. Pilot-plant experiments. Methods in Enzymology 1976:822–30. https://doi.org/10.1016/s0076-6879(76)44059-4.

Yamagata H, Terasawa M, Yukawa H. A novel industrial process for l-aspartic acid production using an ultrafiltration-membrane. Catalysis Today 1994;22:621–7. https://doi.org/10.1016/0920-5861(94)80127-4.

Rastall R. Novel enzyme technology for food applications 2007. https://doi.org/10.1533/9781845693718.

Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnáková B, Štěpánková B, et al. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Applied Microbiology and Biotechnology 2009;85:277–84. https://doi.org/10.1007/s00253-009-2073-x.

Travascio P, Zito E, De Maio A, Schroën CGPH, Durante D, De Luca P, et al. Advantages of using non‐isothermal bioreactors for the enzymatic synthesis of antibiotics: The penicillin G acylase as enzyme model. Biotechnology and Bioengineering 2002;79:334–46. https://doi.org/10.1002/bit.10303.

Přibyl M, Chmelíková R, Hasal P, Marek M. Penicillin G hydrolysis in an electro-membrane reactor with immobilized penicillin G acylase. Enzyme and Microbial Technology 2003;33:793–801. https://doi.org/10.1016/s0141-0229(03)00243-6.

McConville FX, Lopez JL, Wald SA. Enzymatic resolution of ibuprofen in a multiphase membrane reactor. Biocatalysis 1990:167–77. https://doi.org/10.1007/978-94-010-9124-4_8.

Liese A, Kragl U, Kierkels H, Schulze B. Membrane reactor development for the kinetic resolution of ethyl 2-hydroxy-4-phenylbutyrate. Enzyme and Microbial Technology 2002;30:673–81. https://doi.org/10.1016/s0141-0229(02)00027-3.

Lyagin E, Drews A, Bhattacharya S, Kraume M. Membrane Reactor System for Parallel Continuous Screening and Characterisation of Biocatalysts. Chemical Engineering Transactions 2012;27:319–24. https://doi.org/10.3303/CET1227054.

Panagopoulos A, Haralambous K-J, Loizidou M. Desalination brine disposal methods and treatment technologies - A review. Science of The Total Environment 2019;693:133545. https://doi.org/10.1016/j.scitotenv.2019.07.351.

Lattemann S, Höpner T. Environmental impact and impact assessment of seawater desalination. Desalination 2008;220:1–15. https://doi.org/10.1016/j.desal.2007.03.009.

Carnevale MC, Gnisci E, Hilal J, Criscuoli A. Direct contact and vacuum membrane distillation application for the olive mill wastewater treatment. Separation and Purification Technology 2016;169:121–7. https://doi.org/10.1016/j.seppur.2016.06.002.

El-Abbassi A, Hafidi A, Khayet M, García-Payo MC. Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination 2013;323:31–8. https://doi.org/10.1016/j.desal.2012.06.014.

Boubakri A, Bouguecha SA-T, Dhaouadi I, Hafiane A. Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination 2015;373:86–93. https://doi.org/10.1016/j.desal.2015.06.025.

Tavakkoli S, Lokare O, Vidic R, Khanna V. Shale gas produced water management using membrane distillation: An optimization-based approach. Resources, Conservation and Recycling 2020;158:104803. https://doi.org/10.1016/j.resconrec.2020.104803.

Criscuoli A, Bafaro P, Drioli E. Vacuum membrane distillation for purifying waters containing arsenic. Desalination 2013;323:17–21. https://doi.org/10.1016/j.desal.2012.08.004.

Dao TD, Laborie S, Cabassud C. Direct As(III) removal from brackish groundwater by vacuum membrane distillation: Effect of organic matter and salts on membrane fouling. Separation and Purification Technology 2016;157:35–44. https://doi.org/10.1016/j.seppur.2015.11.018.

Liu C, Martin A. Applying Membrane Distillation in High-Purity Water Production for Semiconductor Industry. Ultrapure Water: The Definitive Journal of High-Purity Water 2006;April.

Woldemariam D, Kullab A, Khan EU, Martin A. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study. Renewable Energy 2018;128:484–94. https://doi.org/10.1016/j.renene.2017.06.009.

Zarebska A, Nieto DR, Christensen KV, Norddahl B. Ammonia recovery from agricultural wastes by membrane distillation: Fouling characterization and mechanism. Water Research 2014;56:1–10. https://doi.org/10.1016/j.watres.2014.02.037.

Criscuoli A, Capuano A, Andreucci M, Drioli E. Low-temperature direct contact membrane distillation for the treatment of aqueous solutions containing urea. Membranes (Basel) 2020;10:176. https://doi.org/10.3390/membranes10080176.

Zhao Z-P, Xu L, Shang X, Chen K. Water regeneration from human urine by vacuum membrane distillation and analysis of membrane fouling characteristics. Separation and Purification Technology 2013;118:369–76. https://doi.org/10.1016/j.seppur.2013.07.021.

Kalla S. Use of membrane distillation for oily wastewater treatment – A review. Journal of Environmental Chemical Engineering 2021;9:104641. https://doi.org/10.1016/j.jece.2020.104641.

Koeman-Stein NE, Creusen RJM, Zijlstra M, Groot CK, van den Broek WBP. Membrane distillation of industrial cooling tower blowdown water. Water Resources and Industry 2016;14:11–7. https://doi.org/10.1016/j.wri.2016.03.002.

Leaper S, Abdel-Karim A, Gad-Allah TA, Gorgojo P. Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chemical Engineering Journal 2019;360:1330–40. https://doi.org/10.1016/j.cej.2018.10.209.

Criscuoli A, Zhong J, Figoli A, Carnevale M, Huang R, Drioli E. Treatment of dye solutions by vacuum membrane distillation. Water Research 2008;42:5031–7. https://doi.org/10.1016/j.watres.2008.09.014.

Liu H, Wang J. Treatment of radioactive wastewater using direct contact membrane distillation. Journal of Hazardous Materials 2013;261:307–15. https://doi.org/10.1016/j.jhazmat.2013.07.045.

Woldemariam D, Kullab A, Fortkamp U, Magner J, Royen H, Martin A. Membrane distillation pilot plant trials with pharmaceutical residues and energy demand analysis. Chemical Engineering Journal 2016;306:471–83. https://doi.org/10.1016/j.cej.2016.07.082.

Leuchtenberger W, Karrenbauer M, Plöcker U. Scale‐up of an enzyme membrane reactor process for the manufacture of l‐enantiomeric compounds. Annals of the New York Academy of Sciences 1984;434:078–86. https://doi.org/10.1111/j.1749-6632.1984.tb29803.x.

Wöltinger J, Karau A, Leuchtenberger W, Drauz K. Membrane reactors at degussa. Technology Transfer in Biotechnology 2005:289–316. https://doi.org/10.1007/b98909.

Bommarius AS, Schwarm M, Drauz K. Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. Journal of Molecular Catalysis B: Enzymatic 1998;5:1–11. https://doi.org/10.1016/s1381-1177(98)00009-5.

Tao J, McGee K. Development of a continuous enzymatic process for the preparation of (R)-3-(4-fluorophenyl)-2-hydroxy propionic acid. Organic Process Research & Development 2002;6:520–4. https://doi.org/10.1021/op010232y.

Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R, et al. Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess and Biosystems Engineering 2002;25:43–52. https://doi.org/10.1007/s00449-002-0280-2.

Lopez JL, Matson SL. A multiphase/extractive enzyme membrane reactor for production of diltiazem chiral intermediate. Journal of Membrane Science 1997;125:189–211. https://doi.org/10.1016/s0376-7388(96)00292-x.

Lehmann SV, Breinholt J, Bury PS, Nielsen TE. Enzymatic resolution to (−)‐ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase. Chirality 2000;12:568–73. https://doi.org/10.1002/1520-636x(2000)12:7<568::aid-chir4>3.3.co;2-l.

Webster R, Beaumont K, Ritzau M, Stachulski AV. The synthesis of the glucuronide metabolite of UK-157,147 using immobilised uridine 5'-Diphosphoglucuronyl transferase and traditional organic chemistry techniques (imidate method). Biocatalysis and Biotransformation 2001;19:69–83. https://doi.org/10.3109/10242420109103517.

Criscuoli A, Drioli E. Energetic and exergetic analysis of an integrated membrane desalination system. Desalination 1999;124:243–9. https://doi.org/10.1016/s0011-9164(99)00109-5.

Mericq J-P, Laborie S, Cabassud C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Research 2010;44:5260–73. https://doi.org/10.1016/j.watres.2010.06.052.

Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Industrial & Engineering Chemistry Research 2001;40:2679–84. https://doi.org/10.1021/ie000906d.

Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203:260–76. https://doi.org/10.1016/j.desal.2006.02.021.

Tun CM, Fane AG, Matheickal JT, Sheikholeslami R. Membrane distillation crystallization of concentrated salts—flux and crystal formation. Journal of Membrane Science 2005;257:144–55. https://doi.org/10.1016/j.memsci.2004.09.051.

Rezaei M, Warsinger DM, Lienhard V JH, Samhaber WM. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. Journal of Membrane Science 2017;530:42–52. https://doi.org/10.1016/j.memsci.2017.02.013.

Ursino C, Ounifi I, Di Nicolò E, Cheng XQ, Shao L, Zhang Y, et al. Development of non-woven fabric-based ECTFE membranes for direct contact membrane distillation application. Desalination 2021;500:114879. https://doi.org/10.1016/j.desal.2020.114879.

Qtaishat M, Rana D, Khayet M, Matsuura T. Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation. Journal of Membrane Science 2009;327:264–73. https://doi.org/10.1016/j.memsci.2008.11.040.

Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. Journal of Engineered Fibers and Fabrics 2019;14:155892501882490. https://doi.org/10.1177/1558925018824901.

Su C, Chang J, Tang K, Gao F, Li Y, Cao H. Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation. Separation and Purification Technology 2017;178:279–87. https://doi.org/10.1016/j.seppur.2017.01.050.

Madalosso HB, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state‐of‐the‐art review. Advanced Engineering Materials 2021;23. https://doi.org/10.1002/adem.202001456.

Ahmed FE, Lalia BS, Hashaikeh R, Hilal N. Enhanced performance of direct contact membrane distillation via selected electrothermal heating of membrane surface. Journal of Membrane Science 2020;610:118224. https://doi.org/10.1016/j.memsci.2020.118224.

Alsaati A, Marconnet AM. Energy efficient membrane distillation through localized heating. Desalination 2018;442:99–107. https://doi.org/10.1016/j.desal.2018.05.009.

Criscuoli A. Experimental investigation of the thermal performance of new flat membrane module designs for membrane distillation. International Communications in Heat and Mass Transfer 2019;103:83–9. https://doi.org/10.1016/j.icheatmasstransfer.2019.02.015.

Yang X, Wang R, Fane AG. Novel designs for improving the performance of hollow fiber membrane distillation modules. Journal of Membrane Science 2011;384:52–62. https://doi.org/10.1016/j.memsci.2011.09.007.

Singh D, Li L, Obusckovic G, Chau J, Sirkar KK. Novel cylindrical cross-flow hollow fiber membrane module for direct contact membrane distillation-based desalination. Journal of Membrane Science 2018;545:312–22. https://doi.org/10.1016/j.memsci.2017.09.007.

Lee H, He F, Song L, Gilron J, Sirkar KK. Desalination with a cascade of cross-flow hollow fiber membrane distillation devices integrated with a heat exchanger. AIChE Journal 2010;57:1780–95. https://doi.org/10.1002/aic.12409.

Koschikowski J, Wieghaus M, Rommel M, Ortin VS, Suarez BP, Betancort Rodríguez JR. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination 2009;248:125–31. https://doi.org/10.1016/j.desal.2008.05.047.

Chafidz A, Kerme ED, Wazeer I, Khalid Y, Ajbar A, Al-Zahrani SM. Design and fabrication of a portable and hybrid solar-powered membrane distillation system. Journal of Cleaner Production 2016;133:631–47. https://doi.org/10.1016/j.jclepro.2016.05.127.

Elminshawy NAS, Gadalla MA, Bassyouni M, El-Nahhas K, Elminshawy A, Elhenawy Y. A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water. Renewable Energy 2020;162:802–17. https://doi.org/10.1016/j.renene.2020.08.041.

Mericq J-P, Laborie S, Cabassud C. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chemical Engineering Journal 2011;166:596–606. https://doi.org/10.1016/j.cej.2010.11.030.

Sarbatly R, Chiam C-K. Evaluation of geothermal energy in desalination by vacuum membrane distillation. Applied Energy 2013;112:737–46. https://doi.org/10.1016/j.apenergy.2012.12.028.

Criscuoli A. Thermal performance of integrated direct contact and vacuum membrane distillation units. Energies 2021;14:7405. https://doi.org/10.3390/en14217405.

Criscuoli A. Improvement of the membrane distillation performance through the integration of different configurations. Chemical Engineering Research and Design 2016;111:316–22. https://doi.org/10.1016/j.cherd.2016.05.020.

Downloads

Published

2024-01-31

Issue

Section

Review Articles

How to Cite

Russo, F., Mazzei , R. ., Brunetti, A. ., Criscuoli, A., & Figoli, A. (2024). The Status and Perspectives of Sustainable Membrane Materials, Membrane (Bio)reactors, and Membrane Distillation Processes. Membrane Science International, 3(1), 1–25. https://rasayely-journals.com/index.php/msi/article/view/66

Similar Articles

You may also start an advanced similarity search for this article.